Climate Dynamics

, Volume 42, Issue 11–12, pp 3289–3311 | Cite as

The regional forcing of Northern hemisphere drought during recent warm tropical west Pacific Ocean La Niña events

  • Andrew HoellEmail author
  • Chris Funk
  • Mathew Barlow


Northern Hemisphere circulations differ considerably between individual El Niño-Southern Oscillation events due to internal atmospheric variability and variation in the zonal location of sea surface temperature forcing over the tropical Pacific Ocean. This study examines the similarities between recent Northern Hemisphere droughts associated with La Niña events and anomalously warm tropical west Pacific sea surface temperatures during 1988–1989, 1998–2000, 2007–2008 and 2010–2011 in terms of the hemispheric-scale circulations and the regional forcing of precipitation over North America and Asia during the cold season of November through April. The continental precipitation reductions associated with recent central Pacific La Niña events were most severe over North America, eastern Africa, the Middle East and southwest Asia. High pressure dominated the entire Northern Hemisphere mid-latitudes and weakened and displaced storm tracks northward over North America into central Canada. Regionally over North America and Asia, the position of anomalous circulations within the zonal band of mid-latitude high pressure varied between each La Niña event. Over the northwestern and southeastern United States and southern Asia, the interactions of anomalous circulations resulted in consistent regional temperature advection, which was subsequently balanced by similar precipitation-modifying vertical motions. Over the central and northeastern United States, the spatial variation of anomalous circulations resulted in modest inter-seasonal temperature advection variations, which were balanced by varying vertical motion and precipitation patterns. Over the Middle East and eastern Africa, the divergence of moisture and the advection of dry air due to anomalous circulations enhanced each of the droughts.


El Niño-Southern Oscillation ENSO diversity La Niña Drought Tropical warm pool 



The authors would like to thank three anonymous reviewers whose comments and suggestions helped to improve the manuscript. NCEP Reanalysis and ERSST data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their web site at This research builds upon a multi-year research project carried out under a US Agency for International Development-funded Famine Early Warning System Network agreement with the US Geological Survey.


  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version–2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeor 4(6):1147–1167. doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
  2. An SI, Kim JW, Im SH, Kim BM, Park JH (2012) Recent and future sea surface temperature trends in tropical pacific warm pool and cold tongue regions. Clim Dyn 39(6):1373–1383. doi: 10.1007/s00382-011-1129-7 CrossRefGoogle Scholar
  3. Annamalai H, Okajima H, Watanabe M (2007) Possible impact of the indian ocean SST on the northern hemisphere circulation during El Nino. J Clim 20(13):3164–3189. doi: 10.1175/JCLI4156.1 CrossRefGoogle Scholar
  4. Atlas R, Wolfson N, Terry J (1993) The effect of SST and soil moisture anomalies on GLA model simulations of the 1988 US summer drought. J Clim 6(11):2034–2048. doi: 10.1175/1520-0442(1993)006<2034:TEOSAS>2.0.CO;2
  5. Barlow M, Cullen H, Lyon B (2002) Drought in central and southwest Asia: La nina, the warm pool, and Indian Ocean precipitation. J Clim 15(7):697–700. doi: 10.1175/1520-0442(2002)015<0697:DICASA>2.0.CO;2 Google Scholar
  6. Barlow M, Wheeler M, Lyon B, Cullen H (2005) Modulation of daily precipitation over southwest Asia by the Madden Julian oscillation. Mon Weather Rev 133(12):3579–3594. doi: 10.1175/MWR3026.1 CrossRefGoogle Scholar
  7. Camberlin P, Okoola RE (2003) The onset and cessation of the "long rains" in eastern Africa and their interannual variability. Theor Appl Climatol 75(1):43–54. doi: 10.1007/s00704-002-0721-51 Google Scholar
  8. Camberlin P, Janicot S, Poccard I (2001) Seasonality and atmospheric dynamics of the teleconnection between African rainfall and tropical sea-surface temperature: Atlantic vs. ENSO. Int J Climatol 21(8):973–1005. doi: 10.1002/joc.673 CrossRefGoogle Scholar
  9. Chang EKM, Lee S, Swanson KL (2002) Storm track dynamics. J Clim 15(16):2163–2183. doi: 10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2 Google Scholar
  10. Chen P, Newman M (1998) Rossby wave propagation and the rapid development of upper-level anomalous anticyclones during the 1988 US drought. J Clim 11(10):2491–2504. doi: 10.1175/1520-0442(1998)011<2491:RWPATR>2.0.CO;2
  11. Collins M, An SI, Cai W, Ganachaud A, Guilyardi E, Jin FF, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific Ocean and El Nino. Nat Geosci 3(6):391–397. doi: 10.1038/ngeo868 CrossRefGoogle Scholar
  12. Compo GP, Sardeshmukh PD (2009) Removing ENSO-related variations from the climate record. J Clim 23(8):1957–1978. doi: 10.1175/2009JCLI2735.1 CrossRefGoogle Scholar
  13. Diaz HF, Hoerling MP, Eischeid JK (2001) ENSO variability, teleconnections and climate change. Int J Climatol 21(15):1845–1862. doi: 10.1002/joc.631 CrossRefGoogle Scholar
  14. Enfield DB, Mestas Nuez AM, Trimble PJ (2001) The atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys Res Lett 28(10):2077–2080. doi: 10.1029/2000GL012745 CrossRefGoogle Scholar
  15. Farmer G (1988) Seasonal forecasting of the kenya coast short rains, 1901–84. J Climatol 8(5):489–497. doi: 10.1002/joc.3370080505 CrossRefGoogle Scholar
  16. Giorgi F, Mearns LO, Shields C, Mayer L (1996) A regional model study of the importance of local versus remote controls of the 1988 drought and the 1993 flood over the central united states. J Clim 9(5):1150–1162. doi: 10.1175/1520-0442(1996)009<1150:ARMSOT>2.0.CO;2
  17. Hoell A, Funk C (2013) The ENSO-related west pacific sea surface temperature gradient. J Clim (in review)Google Scholar
  18. Hoell A, Barlow M, Saini R (2012) The leading pattern of intraseasonal and interannual Indian Ocean precipitation variability and its relationship with asian circulation during the boreal cold season. J Clim 25(21):7509–7526. doi: 10.1175/JCLI-D-11-00572.1 CrossRefGoogle Scholar
  19. Hoerling M, Kumar A (2003) The perfect ocean for drought. Science 299(5607):691–694, Google Scholar
  20. Hoerling MP, Kumar A (1997) Why do North American climate anomalies differ from one El Nino event to another? Geophys Res Lett 24(9):1059–1062. doi: 10.1029/97GL00918 CrossRefGoogle Scholar
  21. Hoerling MP, Kumar A (2002) Atmospheric response patterns associated with tropical forcing. J Clim 15(16):2184–2203. doi: 10.1175/1520-0442(2002)015<2184:ARPAWT>2.0.CO;2 Google Scholar
  22. Holton JR (2004) An introduction to dynamic meteorology. Elsevier: BurlingtonGoogle Scholar
  23. Indeje M, Semazzi FH, Ogallo LJ (2000) ENSO signals in east African rainfall seasons. Int J Climatol 20(1):19–46. doi: 10.1002/(SICI)1097-0088(200001)20:1<19::AID-JOC449>3.0.CO;2-0 Google Scholar
  24. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 Google Scholar
  25. Karnauskas KB, Seager R, Kaplan A, Kushnir Y, Cane MA (2009) Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean*. J Clim 22(16):4316–4321. doi: 10.1175/2009JCLI2936.1 CrossRefGoogle Scholar
  26. Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288(5473):1984–1985. Google Scholar
  27. Kijazi AL, Reason CJC (2005) Relationships between intraseasonal rainfall variability of coastal tanzania and ENSO. Theor Appl Climatol 82(3):153–176. doi: 10.1007/s00704-005-0129-0 CrossRefGoogle Scholar
  28. Kumar A, Hoerling MP (1997) Interpretation and implications of the observed InterEl nino variability. J Clim 10(1):83–91. doi: 10.1175/1520-0442(1997)010<0083:IAIOTO>2.0.CO;2 Google Scholar
  29. Kumar A, Zhang Q, Peng P, Jha B (2005) SST-Forced atmospheric variability in an atmospheric general circulation model. J Clim 18(19):3953–3967. doi: 10.1175/JCLI3483.1 CrossRefGoogle Scholar
  30. Lau NC, Leetmaa A, Nath MJ (2006) Attribution of atmospheric variations in the 19972003 period to SST anomalies in the Pacific and Indian Ocean basins. J Clim 19(15):3607–3628. doi: 10.1175/JCLI3813.1 CrossRefGoogle Scholar
  31. Lee EJ, Jhun JG, Kang IS (2002) The characteristic variability of boreal wintertime atmospheric circulation in El Nino events. J Clim 15(8):892–904. doi: 10.1175/1520-0442(2002)015<0892:TCVOBW>2.0.CO;2 Google Scholar
  32. Liu AZ, Ting M, Wang H (1998) Maintenance of circulation anomalies during the 1988 drought and 1993 floods over the united states. J Atmos Sci 55(17):2810–2832. doi: 10.1175/1520-0469(1998)055<2810:MOCADT>2.0.CO;2
  33. Liu J, Stewart RE, Szeto KK (2004) Moisture transport and other hydrometeorological features associated with the severe 2000/01 drought over the western and central Canadian prairies. J Clim 17(2):305–319. doi: 10.1175/1520-0442(2004)017<0305:MTAOHF>2.0.CO;2 Google Scholar
  34. Lyon B, DeWitt DG (2012) A recent and abrupt decline in the East African long rains. Geophys Res Lett 39(2):n/a–n/a. doi: 10.1029/2011GL050337
  35. Lyon B, Dole RM (1995) A diagnostic comparison of the 1980 and 1988 U.S. summer heat wave-droughts. J Clim 8(6):1658–1675. doi: 10.1175/1520-0442(1995)008<1658:ADCOTA>2.0.CO;2
  36. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78(6):1069–1079. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
  37. Mariotti A (2007) How ENSO impacts precipitation in southwest central Asia. Geophys Res Lett 34(16):L16,706. doi: 10.1029/2007GL030078 CrossRefGoogle Scholar
  38. Martin-Ortega J, Markandya A (2010) The costs of drought: the exceptional 2007–2008 case of barcelona. Tech rep, BC3,
  39. Mathieu PP, Sutton RT, Dong B, Collins M (2004) Predictability of winter climate over the North Atlantic European region during ENSO events. J Clim 17(10):1953–1974. doi: 10.1175/1520-0442(2004)017<1953:POWCOT>2.0.CO;2 Google Scholar
  40. McCabe GJ, Dettinger MD (1999) Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. Int J Climatol 19(13):1399–1410. doi: 10.1002/(SICI)1097-0088(19991115)19:13<1399::AID-JOC457>3.0.CO;2-A
  41. McCabe GJ, Dettinger MD (2002) Primary modes and predictability of year–to–year snowpack variations in the western united states from teleconnections with pacific ocean climate. J Hydrometeor 3(1):13–25. doi: 10.1175/1525-7541(2002)003<0013:PMAPOY>2.0.CO;2 Google Scholar
  42. McCabe GJ, Palecki MA, Betancourt JL (2004) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. In: Proceedings of the National Academy of Sciences 101(12):4136–4141.
  43. Mo KC, Zimmerman JR, Kalnay E, Kanamitsu M (1991) A GCM study of the 1988 united states drought. Mon Weather Rev 119(7):1512–1532. doi: 10.1175/1520-0493(1991)119<1512:AGSOTU>2.0.CO;2
  44. Namias J (1991) Spring and summer 1988 drought over the contiguous united statecauses and prediction. J Clim 4(1):54–65. doi: 10.1175/1520-0442(1991)004<0054:SASDOT>2.0.CO;2
  45. Palmer TN, Brankovic C (1989) The 1988 US drought linked to anomalous sea surface temperature. Nature 338(6210):54–57. doi: 10.1038/338054a0 CrossRefGoogle Scholar
  46. Piechota TC, Dracup JA (1996) Drought and regional hydrologic variation in the United States: associations with the El Nino-Southern Oscillation. Water Resour Res 32(5):1359–1373. doi: 10.1029/96WR00353 CrossRefGoogle Scholar
  47. Ratnam J, Behera S, Masumoto Y, Takahashi K, Yamagata T (2011) Anomalous climatic conditions associated with the El Nino Modoki during boreal winter of 2009. Clim Dyn pp 1–12. doi: 10.1007/s00382-011-1108-z
  48. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASAs modern–era retrospective analysis for research and applications. J Clim 24(14):3624–3648. doi: 10.1175/JCLI-D-11-00015.1 CrossRefGoogle Scholar
  49. Ropelewski CF, Halpert MS (1986) North American precipitation and temperature patterns associated with the el Nino/Southern Oscillation (ENSO). Mon Weather Rev 114(12):2352–2362. doi: 10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2
  50. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the el Nino/Southern Oscillation. Mon Weather Rev 115(8):1606–1626. doi: 10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2
  51. Ropelewski CF, Halpert MS (1989) Precipitation patterns associated with the high index phase of the Southern Oscillation. J Clim 2(3):268–284. doi: 10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2 Google Scholar
  52. Seager R (2007) The turn of the century North American drought: global context, dynamics, and past analogs. J Clim 20(22):5527–5552. doi: 10.1175/2007JCLI1529.1 CrossRefGoogle Scholar
  53. Seager R, Tzanova A, Nakamura J (2009) Drought in the southeastern United States: causes, variability over the last millennium, and the potential for future hydroclimate change*. J Clim 22(19):5021–5045. doi: 10.1175/2009JCLI2683.1 CrossRefGoogle Scholar
  54. Shabbar A, Yu B (2009) The 19982000 la nia in the context of historically strong la nia events. J Geophys Res 114(D13):D13,105. doi: 10.1029/2008JD011185 CrossRefGoogle Scholar
  55. Shabbar A, Bonsal B, Khandekar M (1997) Canadian precipitation patterns associated with the Southern Oscillation. J Clim 10(12):3016–3027. doi: 10.1175/1520-0442(1997)010<3016:CPPAWT>2.0.CO;2 Google Scholar
  56. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAAs historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296. doi: 10.1175/2007JCLI2100.1 CrossRefGoogle Scholar
  57. Solomon A, Newman M (2012) Reconciling disparate twentieth-century indo-pacific ocean temperature trends in the instrumental record. Nat Clim Change 2(9):691–699. doi: 10.1038/nclimate1591 Google Scholar
  58. Syed FS, Giorgi F, Pal JS, King MP (2006) Effect of remote forcings on the winter precipitation of central southwest Asia part 1: observations. Theor Appl Climatol 86(1):147–160. doi: 10.1007/s00704-005-0217-1 CrossRefGoogle Scholar
  59. Syed FS, Giorgi F, Pal JS, Keay K (2010) Regional climate model simulation of winter climate over central southwest Asia, with emphasis on NAO and ENSO effects. Int J Climatol 30(2):220–235. doi: 10.1002/joc.1887 Google Scholar
  60. Trenberth KE (1997) The definition of El Nino. Bull Am Meteorol Soc 78(12):2771–2777. doi: 10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2 Google Scholar
  61. Trenberth KE, Branstator GW (1992) Issues in establishing causes of the 1988 drought over North America. J Clim 5(2):159–172. doi: 10.1175/1520-0442(1992)005<0159:IIECOT>2.0.CO;2
  62. Trenberth KE, Guillemot CJ (1996) Physical processes involved in the 1988 drought and 1993 floods in North America. J Clim 9(6):1288–1298. doi: 10.1175/1520-0442(1996)009<1288:PPIITD>2.0.CO;2
  63. Trenberth KE, Smith L (2009) Variations in the three-dimensional structure of the atmospheric circulation with different flavors of El Nino. J Clim 22(11):2978–2991. doi: 10.1175/2008JCLI2691.1 CrossRefGoogle Scholar
  64. Trenberth KE, Branstator GW, Arkin PA (1988) Origins of the 1988 North American drought. Science 242(4886):1640–1645.
  65. Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global. teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(C7):14,291–14,324 doi: 10.1029/97JC01444 CrossRefGoogle Scholar
  66. Vera C, Silvestri G, Barros V, Carril A (2004) Differences in El Nino response over the southern hemisphere. J Clim 17(9):1741–1753. doi: 10.1175/1520-0442(2004)017<1741:DIENRO>2.0.CO;2 Google Scholar
  67. Wang G, Hendon HH (2007) Sensitivity of australian rainfall to InteEl nino variations. J Clim 20(16):4211–4226. doi: 10.1175/JCLI4228.1 CrossRefGoogle Scholar
  68. Weaver SJ, Ruiz-Barradas A, Nigam S (2009) Pentad evolution of the 1988 drought and 1993 flood over the great plains: an NARR perspective on the atmospheric and terrestrial water balance. J Clim 22(20):5366–5384. doi: 10.1175/2009JCLI2684.1 CrossRefGoogle Scholar
  69. Xie P, Arkin PA (1997) Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78(11):2539–2558. doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
  70. Zhang L, Wu L, Yu L (2011) Oceanic origin of a recent la nia-like trend in the tropical Pacific. Adv Atmos Sci 28(5):1109–1117. doi: 10.1007/s00376-010-0129-6 CrossRefGoogle Scholar
  71. Zhang W, Li J, Zhao X (2010) Sea surface temperature cooling mode in the Pacific cold tongue. J Geophys Res 115(C12):C12,042. doi: 10.1029/2010JC006501 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2013

Authors and Affiliations

  1. 1.Department of GeographyUniversity of California Santa BarbaraSanta BarbaraUSA
  2. 2.Department of GeographyU.S. Geological Survey and University of California Santa BarbaraSanta BarbaraUSA
  3. 3.Department of Environmental, Earth and Atmospheric SciencesUniversity of Massachusetts LowellLowellUSA

Personalised recommendations