Climate Dynamics

, Volume 42, Issue 7–8, pp 1905–1923 | Cite as

Hydrological changes in the climate system from leaf responses to increasing CO2

  • Bing Pu
  • Robert E. Dickinson


Vegetation is a major component of the climate system because of its controls on the energy and water balance over land. This functioning changes because of the physiological response of leaves to increased CO2. A climate model is used to compare these changes with the climate changes from radiative forcing by greenhouse gases. For this purpose, we use the Community Earth System Model coupled to a slab ocean. Ensemble integrations are done for current and doubled CO2. The consequent reduction of transpiration and net increase of surface radiative heating from reduction in cloudiness increases the temperature over land by a significant fraction of that directly from the radiative warming by CO2. Large-scale atmospheric circulation adjustments result. In particular, over the tropics, a low-level westerly wind anomaly develops associated with reduced geopotential height over land, enhancing moisture transport and convergence, and precipitation increases over the western Amazon, the Congo basin, South Africa, and Indonesia, while over mid-latitudes, land precipitation decreases from reduced evapotranspiration. On average, land precipitation is enhanced by 0.03 mm day−1 (about 19 % of the CO2 radiative forcing induced increase). This increase of land precipitation with decreased ET is an apparent negative feedback, i.e., less ET makes more precipitation. Global precipitation is slightly reduced. Runoff increases associated with both the increased land precipitation and reduced evapotranspiration. Examining the consistency of the variations among ensemble members shows that vegetation feedbacks on precipitation are more robust over the tropics and in mid to high latitudes than over the subtropics where vegetation is sparse and the internal climate variability has a larger influence.


Vegetation feedbacks Transpiration Precipitation Climate modeling Leaf physiology 



This work is supported by grant DE-SC0002246 from the US Department of Energy. The Texas Advanced Computing Center (TACC) at The University of Texas at Austin is also acknowledged for providing the high performance computing resources for this work. Helpful comments from two anonymous reviewers improved the paper.

Supplementary material

382_2013_1781_MOESM1_ESM.doc (823 kb)
Supplementary material 1 (DOC 823 kb)


  1. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the response of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372. doi: 10.1111/j.1469-8137.2004.01224.x CrossRefGoogle Scholar
  2. Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270. doi: 10.1111/j.1365-3040.2007.01641.x CrossRefGoogle Scholar
  3. Alkama R, Kageyama M, Ramstein G (2010) Relative contributions of climate change, stomatal closure, and leaf area index changes to 20th and 21st century runoff change: a modelling approach using the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) land surface model. J Geophys Res 115:D17112. doi: 10.1029/2009JD013408 CrossRefGoogle Scholar
  4. Andrews T, Doutriaux-Boucher M, Boucher O, Forster PM (2011) A regional and global analysis of carbon dioxide physiological forcing and its impact on climate. Clim Dyn 36:783–792. doi: 10.1007/s00382-010-0742-1 CrossRefGoogle Scholar
  5. Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J (ed) Progress in photosynthesis research, vol 4. Martinus Nijhoff, Dordrecht, Netherlands, pp 221–224Google Scholar
  6. Betts AK (2004) Understanding hydrometeorology using global models. Bull Am Meteorol Soc 85:1673–1688CrossRefGoogle Scholar
  7. Betts AK, Chiu JC (2010) Idealized model for changes in equilibrium temperature, mixed layer depth, and boundary layer cloud over land in a doubled CO2 climate. J Geophys Res 115:D19108. doi: 10.1029/2009JD12888
  8. Betts AK, Viterbo P (2005) Land-surface, boundary layers, and cloud-filed coupling over the southwestern Amazon in ERA-40. J Geophys Res 110: D14108. dio: 10.1029/2004JD005702
  9. Betts R, Cox PM, Lee SE, Woodward FI (1997) Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387:796–799. doi: 10.1038/42924 CrossRefGoogle Scholar
  10. Betts RA, Boucher O et al (2007) Projected increase in continental runoff due plant response to increasing carbon dioxide. Nature 448:1037–1042. doi: 10.1038/nature06045 CrossRefGoogle Scholar
  11. Bitz CM, Shell KM, Gent PR, Bailey D, Danabasoglu G, Armour KC, Holland MM, Kiehl JT (2012) Climate sensitivity of the community climate system model version 4. J Climate 25:3053–3070CrossRefGoogle Scholar
  12. Boucher O, Jones A, Betts RA (2009) Climate response to the physiological impact of carbon dioxide on plants in the Met Office Unified Model HadCM3. Clim Dyn 32:237–249. doi: 10.1007/s00382-008-0459-6 CrossRefGoogle Scholar
  13. Bounoua L, Hall FG, Sellers PJ, Kumar A, Collatz GJ, Tucker CJ, Imhoff ML (2010) Quantifying the negative feedback of vegetation to greenhouse warming: a modeling approach. Geophys Res Lett 37:L23701. doi: 10.1029/2010GL045338 CrossRefGoogle Scholar
  14. Broccoli AJ, Dahl KA, Stouffer RJ (2006) Response of the ITCZ to Northern Hemisphere cooling. Geophys Res Lett 33:L01702. doi: 10.1029/2005GL024546 CrossRefGoogle Scholar
  15. Cao L, Bala G, Caldeira K, Nemani R, Ban-Weiss G (2010) Importance of carbon dioxide physiological forcing of future climate change. Proc Natl Acad Sci 107:9513–9518CrossRefGoogle Scholar
  16. Christensen JH, Hewitson B et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 847–940Google Scholar
  17. Clement A, Dinezio P, Deser C (2011) Rethinking the ocean’s role in the southern oscillation. J Clim 24:4056–4072CrossRefGoogle Scholar
  18. Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis, and transpiration: a model that includes a laminar boundary layer. Agric For Meteor 54:107–136. doi: 10.1016/0168-1923(91)90002-8 CrossRefGoogle Scholar
  19. Cook BI, Bonan GB, Levis S (2006) Soil moisture feedbacks to precipitation in southern Africa. J Clim 19:4198–4206CrossRefGoogle Scholar
  20. Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn 15:183–203CrossRefGoogle Scholar
  21. Deser C, Philips A, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38:527–546CrossRefGoogle Scholar
  22. Doutriaux-Boucher M, Webb MJ, Gregory JM, Boucher O (2009) Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud. Geophys Res Lett 36:L02703. doi: 10.1029/2008GL036273 CrossRefGoogle Scholar
  23. Douville H, Planton S, Royer JF, Stephenson DB, Tyteca S, Kergoat L, Lafont S, Betts RA (2000) Importance of vegetation feedbacks in doubled-CO2 climate experiments. J Geophys Res 105:14841–14861CrossRefGoogle Scholar
  24. Field CB, Chapin FS III, Matson PA, Mooney HA (1992) Response of terrestrial ecosystems to the changing atmosphere: a response-based approach. Annu Rev Syst 23:201–235. doi: 10.1146/annurev.ecolsys.23.1.201 CrossRefGoogle Scholar
  25. Frierson DMW, Hwang YT (2012) Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J Clim 25:720–733. doi: 10.1175/JCLI-D-11-00116.1 CrossRefGoogle Scholar
  26. Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA (2006) Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439:835–838. doi: 10.1038/nature04504 CrossRefGoogle Scholar
  27. Hunke EC, Lipscomb WH (2010) CICE: the Los Alamos Sea Ice Model documentation and software user’s manual version 4.1, LA-CC-06-012, T-3 Fluid Dynamics Group, Los Alamos National Laboratory, Los Alamos, NM, 76 ppGoogle Scholar
  28. Kay JE, Hillman BR et al (2012) Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observation and their corresponding instrument simulators. J Clim 25:5190–5206. doi: 10.1175/JCLI-D-11-00469.1 CrossRefGoogle Scholar
  29. Kumagai TO, Saitoh TM, Sato Y, Takahashi H, Manfroi OJ, Morooka T, Kuraji K, Suzuki M, Yasunari T, Komatsu H (2005) Annual water balance and seasonality of evapotranspiration in a Bornean tropical rainforest. Agric For Meteorol 128(1–2):81–92. doi: 10.1016/j.agrformet.2004.08.006 CrossRefGoogle Scholar
  30. Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2976. doi: 10.1093/jxb/erp096 CrossRefGoogle Scholar
  31. Leipprand A, Gerten D (2006) Global effects of doubled atmospheric CO2 content on evapotranspiration, soil moisture and runoff under potential nature vegetation. Hydrol Sci J 51(1):171–185CrossRefGoogle Scholar
  32. Levis S, Foley JA, Polland D (2000) Large-scale vegetation feedbacks on a doubled CO2 climate. J Clim 13:1313–1325. doi: 10.1175/1520-0442(2000)013<1313:LSVFOA>2.0.CO;2 CrossRefGoogle Scholar
  33. Neale RB, Richter JH et al (2010) Description of the NCAR community atmosphere model (CAM4.0), NCAR technical note, National Center for Atmospheric Research, Boulder, CO, 194 ppGoogle Scholar
  34. Notaro M, Vavrus S, Liu Z (2007) Global vegetation and climate changes due to future increases in CO2 as projected by a fully coupled model with dynamic vegetation. J Clim 20:70–90. doi: 10.1175/JCLI3989.1 CrossRefGoogle Scholar
  35. Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2-do photosynthetic and productivity data from FACE experiments support early predictions. New Phytol 162:253–280. doi: 10.1111/j.1469-8137.2004.01033.x CrossRefGoogle Scholar
  36. Oleson KW, Lawrence DM et al (2010) Technical description of version 4.0 of the community land model (CLM). NCAR technical note NCAR/TN-478 + STR, National Center for Atmospheric Research, Boulder, CO, 257 ppGoogle Scholar
  37. Pu B, Dickinson RE (2012) Examining vegetation feedbacks on global warming in the Community Earth System Model. J Geophys Res 117:D20110. doi: 10.1029/2012JD017623 Google Scholar
  38. Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D (1989) Radiative forcing and climate: results from the earth radiation budget experiment. Science 243:57–63. doi: 10.1126/science.243.4887.57 CrossRefGoogle Scholar
  39. Randall D, Dazlich DA et al (1996) A revised land surface parameterization (SiB2) for GCMs. Part III: the greening of the Colorado State University General Circulation Model. J Clim 9:738–763. doi: 10.1175/1520-0493(1996)124<2521:ASFPBO>2.0.CO;2 CrossRefGoogle Scholar
  40. Sellers PJ, Bounoua L, Collatz GJ, Randall DA, Dazlich DA, Los SO, Berry JA, Fung I, Tucher CJ, Field CB, Jensen TG (1996a) Comparison of radiative and physiological effects of doubled CO2 on climate. Science 271:1402–1406. doi: 10.1126/science.271.5254.1402 CrossRefGoogle Scholar
  41. Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Bounoua L (1996b) A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: model formulation. J Clim 9:676–705CrossRefGoogle Scholar
  42. Sellers PJ, Dickinson RE, Randall DA, Betts AB, Hall FG, Berry JA, Collatz GJ, Denning AS, Monney HA, Nobre CA, Sato N, Field CBH, Henderson-Sellers A (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275:502–509CrossRefGoogle Scholar
  43. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interaction in a change climate: a review. Earth Sci Rev 99:125–161CrossRefGoogle Scholar
  44. Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox P, Friedlingstein P, Jones CD, Prentice IC, Woodward RI (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob Change Biol 14:2015–2039. doi: 10.1111/j.1365-2486.2008.01626.x CrossRefGoogle Scholar
  45. Smith R, Jones P, Briegleb B, Bryan F, Danabasoglu G, Dennis J, Dukowicz J, Eden C, Fox-Kemper B, Gent P, Hecht M, Jayne S, Jochum M, Large W, Lindsay K, Maltrud M, Norton N, Peacock S, Vertenstein M, Yeager S (2010) The parallel ocean program (POP) reference manual, LAUR-10-01853, Los Alamos National Laboratory, Los Alamos, NM, 141 ppGoogle Scholar
  46. Tissue DT, Thomas RB, Strain BR (1993) Long-term effects of elevated CO2 and nutrients on photosynthesis and rubisco in loblolly pine seedlings. Plant Cell Environ 16:859–865. doi: 10.1111/j.1365-3040.1993.tb00508.x CrossRefGoogle Scholar
  47. Trenberth KE, Fasullo TJ, Mackaro J (2011) Atmospheric moisture transport from ocean to land and global energy flows reanalyses. J Clim 24:4907–4924CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Geological Sciences, Jackson School of GeosciencesThe University of Texas at AustinAustinUSA

Personalised recommendations