Advertisement

Climate Dynamics

, Volume 42, Issue 7–8, pp 1755–1773 | Cite as

Sensitivity of transient climate change to tidal mixing: Southern Ocean heat uptake in climate change experiments performed with ECHAM5/MPIOM

  • E. ExarchouEmail author
  • J.-S. von Storch
  • J. H. Jungclaus
Article

Abstract

We investigate the sensitivity of the transient climate change to a tidal mixing scheme. The scheme parameterizes diapycnal diffusivity depending on the location of energy dissipation over rough topography, whereas the standard configuration uses horizontally constant diffusivity. We perform ensemble climate change experiments with two setups of MPIOM/ECHAM5, one setup with the tidal mixing scheme and the second setup with the standard configuration. Analysis of the responses of the transient climate change to CO2 increase reveals that the implementation of tidal mixing leads to a significant reduction of the transient surface warming by 9 %. The weaker surface warming in the tidal run is localized particularly over the Weddell Sea, likely caused by a stronger ocean heat uptake in the Southern Ocean. The analysis of the ocean heat budget reveals that the ocean heat uptake in both experiments is caused by changes in convection and advection. In the upper ocean, heat uptake is caused by reduced convection and enhancement of the Deacon Cell, which appears also in isopycnal coordinates. In the deeper ocean, heat uptake is caused by reduction of convective cooling associated with the circulation polewards of 65°S. Tidal mixing leads to stronger heat uptake in the Southern Ocean by causing stronger changes in advection, namely a stronger increase in the Deacon Cell and a stronger reduction in advective cooling by the circulation polewards of 65°S. Counter-intuitively, the relation between tidal mixing and greater heat storage in the deep ocean is an indirect one, through the influence of tidal mixing on the circulation.

Keywords

Transient climate change Tidal mixing Climate change experiments Southern Ocean 

Notes

Acknowledgments

We would like to thank Suvarchal Kumar Cheedela for the constructive discussions. We thank the three anonymous reviewers for their useful comments. The model integration was performed on the Linux-cluster of the German Climate Computing Center (DKRZ) in Hamburg. This work is supported by the Max Planck Society and the International Max Planck Research School on Earth System Modelling.

References

  1. Alory G, Wijffels S, Meyers G (2007) Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys Res Lett 34:L02606. doi: 10.1029/2006GL028044, http://dx.doi.org/10.1029/2006GL028044
  2. Armour KC, Bitz CM, Roe GH (2012) Time-varying climate sensitivity from regional feedbacks. J Clim. doi: 10.1175/JCLI-D-12-00544.1
  3. Barnett TP, Pierce DW, Schnur R (2001) Detection of anthropogenic climate change in the World’s Oceans. Science 292:270–274CrossRefGoogle Scholar
  4. Bitz CM, Gent PR, Woodgate RA, Holland MM, Lindsay R (2006) The influence of sea ice on ocean heat uptake in response to increasing CO2. J Clim 19:2437–2450CrossRefGoogle Scholar
  5. Bryan F (1987) Parameter sensitivity of primitive equation of ocean general circulation models. J Phys Oceanogr 17:970–985CrossRefGoogle Scholar
  6. Dalan F, Stone PH, Sokolov AP (2004) Sensitivity of the ocean’s climate to diapycnal diffusivity in an EMIC. Part II: global warming scenario. J Clim 18:2482–2496CrossRefGoogle Scholar
  7. Danabasoglu G, McWilliams JC (1995) Sensitivity of the global ocean circulation to parameterizations of mesoscale tracer transports. J Clim 25:2967–2987CrossRefGoogle Scholar
  8. Döös K, Webb DJ (1994) The Deacon cell and other meridional cells in the Southern Ocean. J Phys Oceanogr 24:429–442CrossRefGoogle Scholar
  9. Egbert GD, Ray RD (2003) Semi-diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys Res Lett 30:1907. doi: 10.1029/2003GL017676, http://dx.doi.org/10.1029/2003GL017676
  10. Exarchou E, Von Storch J-S, Jungclaus J (2012) Impact of tidal mixing with different scales of bottom roughness on the general circulation in the ocean model MPIOM. Ocean Dyn 62:1545–1563. doi: 10.1007/s10236-012-0573-1 CrossRefGoogle Scholar
  11. Farneti R, Delworth TL, Rosati AJ, Griffies SM, Zeng F (2010) The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change. J Phys Oceanogr 40:1539–1557CrossRefGoogle Scholar
  12. Folland CK, Karl TR, Salinger JM (2002) Observed climate variablility and change. Weather 57:269–278CrossRefGoogle Scholar
  13. Fyfe JC, Saenko OA (2006) Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys Res Lett 33:L06701. doi: 10.1029/2005GL025332 Google Scholar
  14. Ganaschaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Lett Nat 408:453–457CrossRefGoogle Scholar
  15. Gent PR, Danabasoglu G (2011) Response to increasing southern Hemisphere Winds in CCSM4. J Clim 24:4992–4998CrossRefGoogle Scholar
  16. Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155CrossRefGoogle Scholar
  17. Gille ST (2008) Decadal-scale temperature trends in the Southern Hemisphere Ocean. J Clim 21:4749–4765. doi: 10.1175/2008JCLI2131.1, http://dx.doi.org/10.1175/2008JCLI2131.1 Google Scholar
  18. Gregory JM (2000) Vertical heat transports in the ocean and their effect on time-dependent climate change. Clim Dyn 16:501–515CrossRefGoogle Scholar
  19. Gregory JM et al (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31:L03205. doi: 10.1029/2003GL018747 Google Scholar
  20. Griffies SM, Pacanowski RC, Larichev VD, Dukowicz JK, Smith RD et al (1998) Isoneutral diffusion in a z-coordinate ocean model. J Phys Oceanogr 28:805–830CrossRefGoogle Scholar
  21. Hibler W (1979) Dynamic thermodynamic sea-ice model. J Phys Oceanogr 9:815–846CrossRefGoogle Scholar
  22. Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232CrossRefGoogle Scholar
  23. Huang B, Stone PH, Sokolov A, Kamemkovich I (2003) The deep-ocean heat uptake in transient climate change. J Clim 16:1352–1362CrossRefGoogle Scholar
  24. Jayne SR (2009) The impact of abyssal mixing parameterizations in an ocean general circulation model. J Phys Oceanogr 39:1756–1775CrossRefGoogle Scholar
  25. Jungclaus JH et al (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19:3952–3972CrossRefGoogle Scholar
  26. Jungclaus JH et al (2010) Climate and carbon-cycle variability over the last millennium. Clim Past Discuss 6(3):1009–1044CrossRefGoogle Scholar
  27. Ledwell JR, Montgomery ET, Polzin KL, Laurent LCS, Schmitt RW, Toole JM (2000) Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403:179–182CrossRefGoogle Scholar
  28. Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36:L07608. doi: 10.1029/2008GL037155, http://dx.doi.org/10.1029/2008GL037155
  29. Levitus S, Antonov JI, Wang J, Delworth TL, Dixon KW, Broccoli AJ (2001) Anthropogenic warming of earth’s climate system. Science 292:267–270CrossRefGoogle Scholar
  30. Li C, von Storch J-S, Marotzke J (2012) Deep-ocean heat uptake and equilibrium climate response. Clim Dyn 40:1071–1086Google Scholar
  31. Manabe S, Bryan K, Spelman MJ (1990) Transient responses of a coupled ocean–atmosphere model to a doubling of atmospheric carbon dioxide. J Phys Oceanogr 20:722–749CrossRefGoogle Scholar
  32. Manabe S, Stouffer RJ (1980) Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J Geophys Res 85:5529–5554CrossRefGoogle Scholar
  33. Marshall J, Radko T (2003) Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J Phys Oceanogr 33:2341–2354CrossRefGoogle Scholar
  34. Marsland SJ, Church JA, Bindoff NL, Williams GD (2007) Antarctic coastal polynya response to climate change. J Geophys Res Oceans 112:C07009. doi: 10.1029/2005JC003291, http://dx.doi.org/10.1029/2005JC003291
  35. Marsland SJ, Haak H, Jungclaus JH, Latif M, Röske F (2003) The Max Planck Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127CrossRefGoogle Scholar
  36. Mikolajewitcz U, Voss R (2000) The role of the individual air-sea flux components in co2-induced changes of the ocean’s circulation and climate. Clim Dyn 16:627–642CrossRefGoogle Scholar
  37. Montenegro A, Eby M, Weaver AJ, Jayne SR (2007) Response of a climate model to tidal mixing parameterization under present day and last glacial maximum conditions. Ocean Model 19:125–137CrossRefGoogle Scholar
  38. Muller CJ, Bühler O (2009) Saturation of the internal tides and induced mixing in the abyssal ocean. J Phys Oceanogr 39:2077–2096CrossRefGoogle Scholar
  39. Munk W, Wunsch C (1998) Abyssal recipies II: energetics of tidal and wind mixing. Deep Res I 45:1977–2010CrossRefGoogle Scholar
  40. Pacanowski RC, Philander SGH (1981) Parameterization of vertical mixing in numerical models of tropical oceans. J Phys Oceanogr 11:1443–1451CrossRefGoogle Scholar
  41. Pierce DW, Barnett T, AchutaRao KM, Gleckler PJ, Gregory JM, Washington WM (2006) Anthropogenic warming of the oceans: observations and model results. J Clim 19:1873–1900. doi: 10.1175/JCLI3723.1, http://dx.doi.org/10.1175/JCLI3723.1 Google Scholar
  42. Polzin K, Toole JM, Ledwell JR, Schmitt RW (1997) Spatial variability of turbulent mixing in the abyssal ocean. Science 276:93–96CrossRefGoogle Scholar
  43. Roeckner E et al (2003) The Atmospheric General Circulation Model ECHAM5, Part I. Tech. rep., Max Planck Institute for Meteorology, Bundesstrasse 53, D-20146, HamburgGoogle Scholar
  44. Saenko O, Merryfield W (2004) On the effect of the topographically enhanced mixing on the global ocean circulation. J Phys Oceanogr 35:826–834CrossRefGoogle Scholar
  45. Saenko OA (2006) The effect of localized mixing on the ocean circulation and time-dependent climate change. J Phys Oceanogr 36:140–160CrossRefGoogle Scholar
  46. Saenko OA, Fyfe JC, England MH (2005) On the response of the oceanic wind-driven circulation to CO2 increase. Clim Dyn 25:415–426CrossRefGoogle Scholar
  47. Saenko OA, Zhai X, Merryfield WJ, Lee WG (2012) The combibed effect of tidally and eddy driven diapycnal mixing on the large-scale circulation. J Phys Oceanogr 42:526–538CrossRefGoogle Scholar
  48. Scott JR, Marotzke J (2002) The location of diapycnal mixing and the meridional overturning circulation. J Phys Oceanogr 32:3578–3595CrossRefGoogle Scholar
  49. Semtner AJ (1976) Model for thermodynamic growth of sea-ice in numerical investigations of climate. J Phys Oceanogr 6:379–389CrossRefGoogle Scholar
  50. Sen Gupta A, Santoso A, Taschetto AS, Ummenhofer CC, Trevena J, England MH (2009) Projected changes to the Southern Hemisphere ocean and sea ice in the IPCC AR4 climate models. J Clim 22:3047–3078. doi: 10.1175/2008JCLI2827.1, http://dx.doi.org/10.1175/2008JCLI2827.1 Google Scholar
  51. Senior CA, Mitchell JFB (2000) The time dependance of climate sensitivity. Geophys Res Lett 27:2685–2688CrossRefGoogle Scholar
  52. Simmons HL, Jayne SR, Laurent LCS, Weaver AJ (2004) Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Model 6:245–263CrossRefGoogle Scholar
  53. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  54. Speer K, Rintoul SR, Sloyan B (2000) The diabatic Deacon cell. J Phys Oceanogr 30:3212–3222CrossRefGoogle Scholar
  55. Spence P, Fyfe JC, Montenegro A, Weaver AJ (2010) Southern ocean response to strengthening winds in an eddy-permitting global climate model. J Clim 23:5332–5343CrossRefGoogle Scholar
  56. Spence P, Saenko OA, Eby M, Weaver AJ (2009) The Southern Ocean overturning: parameterized versus permitted eddies. J Phys Oceanogr 39:1634–1651CrossRefGoogle Scholar
  57. St. Laurent LC, Simmons HL, Jayne SR (2002) Estimating tidally driven mixing in the deep ocean. Geophys Res Lett 29(23):21–1–21–4. doi: 10.1029/2002GL015633, http://dx.doi.org/10.1029/2002GL015633
  58. Toole JM, Polzin KL, Schmitt W (1994) Estimates of diapycnal mixing in the Abyssal Ocean. Science 264:1120–1123CrossRefGoogle Scholar
  59. Wolfe CL, Cessi P, McClean JL, Maltrud ME (2008) Vertical heat transport in eddying ocean models. Geophys Res Lett 35:L23605. doi: 10.1029/2008GL036138 CrossRefGoogle Scholar
  60. Zahel W, Gavinho J, Seiler U (2000) Balances de energia y momento angular de un modelo global de mareas con asimilacion de datos. GEOS 20(4):400–413Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • E. Exarchou
    • 1
    • 2
    Email author
  • J.-S. von Storch
    • 1
  • J. H. Jungclaus
    • 1
  1. 1.Max Planck Institute for MeteorologyHamburgGermany
  2. 2.NCAS-Climate, Department of MeteorologyUniversity of ReadingReadingUK

Personalised recommendations