Climate Dynamics

, Volume 41, Issue 3–4, pp 867–884 | Cite as

Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model

  • S. R. M. Ligtenberg
  • W. J. van de Berg
  • M. R. van den Broeke
  • J. G. L. Rae
  • E. van Meijgaard
Article

Abstract

A regional atmospheric climate model with multi-layer snow module (RACMO2) is forced at the lateral boundaries by global climate model (GCM) data to assess the future climate and surface mass balance (SMB) of the Antarctic ice sheet (AIS). Two different GCMs (ECHAM5 until 2100 and HadCM3 until 2200) and two different emission scenarios (A1B and E1) are used as forcing to capture a realistic range in future climate states. Simulated ice sheet averaged 2 m air temperature (T2m) increases (1.8–3.0 K in 2100 and 2.4–5.3 K in 2200), simultaneously and with the same magnitude as GCM simulated T2m. The SMB and its components increase in magnitude, as they are directly influenced by the temperature increase. Changes in atmospheric circulation around Antarctica play a minor role in future SMB changes. During the next two centuries, the projected increase in liquid water flux from rainfall and snowmelt, together 60–200 Gt year−1, will mostly refreeze in the snow pack, so runoff remains small (10–40 Gt year−1). Sublimation increases by 25–50 %, but remains an order of magnitude smaller than snowfall. The increase in snowfall mainly determines future changes in SMB on the AIS: 6–16 % in 2100 and 8–25 % in 2200. Without any ice dynamical response, this would result in an eustatic sea level drop of 20–43 mm in 2100 and 73–163 mm in 2200, compared to the twentieth century. Averaged over the AIS, a strong relation between \(\Updelta\)SMB and \(\Updelta\hbox{T}_{2{\rm m}}\) of 98 ± 5 Gt w.e. year−1 K−1 is found.

Keywords

Antarctica Future surface mass balance Sea level rise 

References

  1. Bengtsson L, Koumoutsaris S, Hodges K (2011) Large-scale surface mass balance of ice sheets from a comprehensive atmospheric model. Surv Geophys 32:459–474. doi:10.1007/s10712-011-9120-8 CrossRefGoogle Scholar
  2. Chapman WL, Walsh JE (2007) Simulations of Arctic temperature and pressure by Global Coupled Models. J Clim 20:609–632. doi:10.1175/JCLI4026.1 CrossRefGoogle Scholar
  3. Church JA et al (2011) Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys Res Lett 38(L18601). doi:10.1029/2011GL048794
  4. Connolley WM, Bracegirdle TJ (2007), An Antarctic assessment of IPCC AR4 coupled models. Geophys Res Lett 34(L22505). doi:10.1029/2007GL031648
  5. Davis CH, Li Y, McConnell JR, Frey MM, Hanna E (2005) Snowfall-driven growth in East Antarctic ice sheet mitigates recent sea-level rise. Science 308:1898–1901. doi:10.1126/science.1110662 CrossRefGoogle Scholar
  6. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828
  7. Ettema J (2010) The present-day climate of Greenland: a study with a regional climate model. PhD thesis, Utrecht University, pp 123, (http://igitur-archive.library.uu.nl/dissertations/2010-0408-200308/uuindex.html).
  8. Ettema J, van den Broeke MR, van Meijgaard E, van de Berg WJ, Bamber J, Box JE, Bales RC (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys Res Lett 36(L12501). doi:10.1029/2009GL038110
  9. Franco B, Fettweis X, Erpicum M, Nicolay S (2011) Present and future climates of the Greenland ice sheet according to the IPCC AR4 models. Clim Dyn 36:1897–1918. doi:10.1007/s00382-010-0779-1 CrossRefGoogle Scholar
  10. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168. doi:10.1007/s003820050010 CrossRefGoogle Scholar
  11. Gregory JM, Huybrechts P (2006) Ice-sheet contributions to future sea-level change. Philos Trans R Soc A 364:1709–1731. doi:10.1098/rsta.2006.1796 CrossRefGoogle Scholar
  12. Held IM, Soden BJ (2006) Robust response of the hydrological cycle to global warming. J Clim 19:5686–5699. doi:10.1175/JCLI3990.1 CrossRefGoogle Scholar
  13. Hellmer HH, Kauker F, Timmermann R, Determann J, Rae J (2012) Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485:225–228. doi:10.1038/nature11064 CrossRefGoogle Scholar
  14. IPCC (2007) Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 996Google Scholar
  15. Johns TC et al (2011), Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment. Clim Dyn 37:1975–2003. doi:10.1007/s00382-011-1005-5 CrossRefGoogle Scholar
  16. Krinner G, Magand O, Simmonds I, Genthon C, Dufresne J-L (2007) Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries. Clim Dyn 28:215–230. doi:10.1007/s00382-006-0177-x CrossRefGoogle Scholar
  17. Kuipers Munneke P, van den Broeke MR, Lenaerts JTM, Flanner MG, Gardner AS, van de Berg WJ (2011) A new albedo parameterization for use in climate models over the Antarctic ice sheet. J Geophys Res 116(D05114). doi:10.1029/2010JD015113
  18. Lenaerts JTM, Van den Broeke MR (2012) Modeling drifting snow in Antarctica with a regional climate model, part II: results. J Geophys Res 117(D05109). doi:10.1029/2010JD015419
  19. Lenaerts JTM, van den Broeke MR, van de Berg WJ, van Meijgaard E, Kuipers Munneke P (2012a) A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys Res Lett 39(L04501). doi:10.1029/2011GL050713
  20. Lenaerts JTM, van den Broeke MR, Scarchilli C, Agosta C (2012b) Impact of model resolution on simulated wind, drifting snow and surface mass balance in Terre Adélie, East Antarctica. J Glaciol 58(211):821–829. doi:10.3189/2012JoG12J020 CrossRefGoogle Scholar
  21. Levermann A et al (2012) Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models. Cryosphere Discuss. 6:3447–3489. doi:10.5194/tcd-6-3447-2012 CrossRefGoogle Scholar
  22. Lowe JA, Hewitt CD, van Vuuren DP, Jones TC, Stehfest E, Royer J-F, van der Linden PJ (2009) New study for climate modeling, analyses, and scenarios. EOS Trans AGU 90(21):181. doi:10.1029/2009EO210001 CrossRefGoogle Scholar
  23. Lythe MB, Vaughan DG, the BEDMAP Consortium (2001) BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J Geophys Res 106(B6):11335–11352. doi:10.1029/2000JB900449 Google Scholar
  24. Maris MNA, de Boer B, Oerlemans J (2012) A model comparison study for the Antarctic region: present and past. Clim Past 8:803–814. doi:10.5194/cp-8-803-2012 CrossRefGoogle Scholar
  25. Monaghan AJ, Bromwich DH, Chapman W, Comiso JC (2008) Recent variability and trends of Antarctic near-surface temperature. J Geophys Res 113(D04105). doi:10.1029/2007JD009094
  26. Muller WA, Roeckner E (2007) ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM. Clim Dyn 31:533–549. doi:10.1007/s00382-007-0357-3 CrossRefGoogle Scholar
  27. Nakicenovic N et al (2000) IPCC special report on emissions scenarios (SRES). Cambridge University Press, CambridgeGoogle Scholar
  28. Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328(1517). doi:10.1126/science.1185782
  29. Picard G, Domine F, Krinner G, Arnaud L, Lefebvre E (2012) Inhibition of the positive snow-albedo feedback by precipitation in interior Antarctica. Nat Clim Change 2:795–798. doi:10.1038/nclimate1590 CrossRefGoogle Scholar
  30. Pope VD, Pamment JA, Jackson DR, Slingo A (2000) The representation of water vapor and its dependence on vertical resolution in the Hadley Centre climate model. J Clim 14:3065–3085. doi:10.1175/1520-0442(2001)014<3065:TROWVA>2.0.CO;2 CrossRefGoogle Scholar
  31. Pritchard HD, Arthern RJ, Vaughan DG, Edwards LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461:971–975. doi:10.1038/nature08471 CrossRefGoogle Scholar
  32. Pritchard HD, Ligtenberg SRM, Fricker HA, Vaughan DG, van den Broeke MR, Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484:502–505. doi:10.1038/nature10968 CrossRefGoogle Scholar
  33. Rignot E, Jacobs SS (2002) Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science 296(2020), doi:10.1126/science.1070942
  34. Rignot E, Bamber JL, van den Broeke MR, Davis C, Li Y, van de Berg WJ, van Meijgaard E (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci 1:106–110. doi:10.1038/ngeo102 CrossRefGoogle Scholar
  35. Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts JTM (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38(L05503). doi:10.1029/2011GL046583
  36. Sheperd A, Ivins ER, Geruo A, IMBIE project group (2012) A reconciled estimate of ice-sheet mass balance. Science 338:1183–1189. doi:10.1126/science.1228102 CrossRefGoogle Scholar
  37. Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012. doi:10.1256/qj.04.176 CrossRefGoogle Scholar
  38. Van de Berg WJ, van den Broeke MR, Reijmer CH, van Meijgaard E (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J Geophys Res 111(D11104). doi:10.1029/2005JD006495
  39. Van den Broeke MR (2008) Depth and density of the Antarctic firn layer. Arct Antarct Alp Res 40(2):432–438. doi:10.1657/1523-0430(07-021)[BROEKE]2.0CO;2Google Scholar
  40. Van den Broeke MR, Van Lipzig NPM (2004) Changes in Antarctic temperature, wind and precipitation in response to the Antarctic Oscillation. Ann Glaciol 39:119–126. doi:10.3189/172756404781814654 CrossRefGoogle Scholar
  41. Van den Broeke MR, Bamber J, Lenaerts J, Rignot E (2011) Ice sheets and sea level: thinking outside the box. Surv Geophys. doi:10.1007/s10712-011-9137-z
  42. Van Lipzig NPM, van Meijgaard E, Oerlemans J (2002) Temperature sensitivity of the Antarctic surface mass balance in a regional atmospheric climate model. J Clim 15:2758–2774. doi:10.1175/1520-0442(2002)015<2758:TSOTAS>2.0.CO;2 CrossRefGoogle Scholar
  43. Van Meijgaard E, van Ulft LH, van de Berg WJ, Bosveld FC, van den Hurk BJJM, Lenderink G, Siebesma AP (2008) The KNMI regional atmospheric climate odel RACMO version 2.1. Royal Netherlands Meteorological Institute De Bilt, The NetherlandsGoogle Scholar
  44. Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36(L19503). doi:10.1029/2009GL040222
  45. Wild M, Calanca P, Scherrer SC, Ohmura A (2003) Effects of polar ice sheets on global sea level in high-resolution greenhouse scenarios, J Geophys Res 108(D5):4165. doi:10.1029/2002JD002451 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. R. M. Ligtenberg
    • 1
  • W. J. van de Berg
    • 1
  • M. R. van den Broeke
    • 1
  • J. G. L. Rae
    • 2
  • E. van Meijgaard
    • 3
  1. 1.IMAUUniversiteit UtrechtUtrechtThe Netherlands
  2. 2.Met OfficeHadley CentreExeterUK
  3. 3.KNMIDe BiltThe Netherlands

Personalised recommendations