Climate Dynamics

, Volume 41, Issue 11–12, pp 3039–3054 | Cite as

Role of stratospheric dynamics in the ozone–carbon connection in the Southern Hemisphere

  • Chiara CagnazzoEmail author
  • Elisa Manzini
  • Pier Giuseppe Fogli
  • Marcello Vichi
  • Paolo Davini


The role of stratospheric dynamics in past and projected future long-term changes of the Southern Hemisphere climate is examined with a special regard to the oceanic carbon uptake, by comparing results from two sets of simulations performed with the high-top version and the low-top version of the CMCC-Carbon Earth System Model. An improved description of the stratospheric dynamics results in weakened (~20 to 25 %) annual-mean Southern Ocean air-to-sea carbon fluxes in the 1990–2005 period, with implications for the global ocean carbon uptake. Simulated changes in the Southern Hemisphere climate are reproduced in both model simulations and are consistent with numerous previous studies. However, the low-top model is unable to fully capture the observed stratospheric cooling, because the component associated with the changes in stratospheric circulation is missing. Smaller trend of the stratospheric polar vortex found in the low-top model (in response to stratospheric ozone and greenhouse gas changes) is followed by a smaller trend of the poleward-shifted tropospheric jet in the troposphere. The latter implies smaller (~10 %) wind stress increase in the November to February season and a smaller projection on Sea Level Pressure changes. Our results point out the importance of including a proper representation of stratospheric dynamics, at least with a certain degree of detail, in order to obtain more reliable long-term climate simulations and projections in the Southern Hemisphere circulation patterns and air-sea fluxes.


Carbon Earth System Model Stratospheric Ozone Southern Hemisphere climate change Ocean Carbon Cycle 



Chiara Cagnazzo is grateful to Bill Randel, Rolando Garcia, Dan Marsh and Natalia Calvo for useful discussions during the preparation of this manuscript. This work was partially funded by the European Commission’s 7th Framework Programme, under GA226520, COMBINE project. We acknowledge the support of Italian Ministry of Education, University and Research and Ministry for Environment, Land and Sea through the project GEMINA.


  1. Bellucci A et al (2012) Decadal climate predictions with a coupled OAGCM initialized with oceanic reanalyses. Clim Dyn. doi:  10.1007/s00382-012-1468-z (in press)
  2. Alessandri A (2006) Effects of land surface and vegetation processes on the climate simulated by an atmospheric general circulation model. PhD Thesis, Bologna University Alma Mater StudiorumGoogle Scholar
  3. Alessandri A, Fogli PG, Vichi M, Zeng N (2012) Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective. Earth Syst Dyn Discuss 3:523–560. doi: 10.5194/esdd-3-523-2012 CrossRefGoogle Scholar
  4. Andrews DG, Holton JR, Leovy CB (1987) Middle atmospheric dynamics. Academic Press, San DiegoGoogle Scholar
  5. Boening CW, Dispert A, Visbeck M, Rintoul SR, Schwarzkopf FU (2008) The response of the Antarctic circumpolar current to recent climate change. Nat Geosci 1:864–869. doi: 10.1038/ngeo362 CrossRefGoogle Scholar
  6. Cagnazzo C, Manzini E (2009) Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European region. J Clim 22:1223–1238. doi: 10.1175/2008JCLI2549.1 CrossRefGoogle Scholar
  7. Cagnazzo C, Manzini E, Giorgetta MA, De PMP, Forster F, Morcrette JJ (2007) Impact of an improved shortwave radiation scheme in the MAECHAM5 general circulation model. Atmos Chem Phys 7:2503–2515. doi: 10.5194/acp-7-2503-2007 CrossRefGoogle Scholar
  8. Charlton-Perez AJ et al (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res Atmos 118. doi: 10.1002/jgrd.50125
  9. Cionni I et al (2011) Ozone database in support of CMIP5 simulations: results and 718 corresponding radiative forcing. Atmos Chem Phys Discuss 11:10875–10933CrossRefGoogle Scholar
  10. Fogli PG, Manzini E, Vichi M, Alessandri LPA, Gualdi S, Scoccimarro E, Masina S, Navarra A (2009) INGV-CMCC Carbon: a Carbon Cycle Earth System Model, Tech. Rep. RP0061,CMCC.
  11. Fogt RL, Perlwitz J, Monaghan AJ, Bromwich DH, Jones JM, Marshall GJ (2009) Historical SAM variability. Part II: twentieth-century variability and trends from reconstructions, observations, and the IPCC AR4 models. J Clim 22:5346–5365CrossRefGoogle Scholar
  12. Follows MJ, Ito T, Dutkiewicz S (2006) On the solution of the carbonate chemistry system in ocean biogeochemistry models. Ocean Modelling 12(3–4):290–301Google Scholar
  13. Fyfe JC, Saenko OA (2006) Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys Res Lett 33:L06701. doi: 10.1029/2005GL025332 CrossRefGoogle Scholar
  14. Gerber EP et al (2012) Assessing and understanding the impact of stratospheric dynamics and variability on the earth system. Bull Amer Meteor Soc 93:845–859.
  15. Gillett NP, Thompson DWJ (2003) Simulation of recent Southern Hemisphere climate change. Science 302:273–275CrossRefGoogle Scholar
  16. Goosse H, Arzel O, Bitz CM, de Montety A, Vancoppenolle M (2009) Increased variability of the Arctic summer ice extent in a warmer climate. Geophys Res Lett 36:L23702. doi: 10.1029/2009GL040546 CrossRefGoogle Scholar
  17. Graversen RG, Christiansen B (2003) Downward propagation from the stratosphere to the troposphere: A comparison of the two hemispheres. J Geophys Res 108. doi: 10.1029/2003JD004077
  18. Gruber N, Gloor M, Mikaloff-Fletcher SE, Doney SC, Dutkiewicz S, Follows MJ, Gerber M, Jacobson AR, Joos F, Lindsay K, Menemenlis D, Mouchet A, Mueller SA, Sarmiento JL, Takahashi T (2009) Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem Cycles 23:GB1005. doi: 10.1029/2008GB003349 CrossRefGoogle Scholar
  19. Ito T, Woloszyn M, Mazloff M (2010) Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow. Nature 463:80–83. doi: 10.1038/nature08687 CrossRefGoogle Scholar
  20. Iudicone D, Rodgers KB, Stendardo I, Aumont O, Madec G, Bopp L, Mangoni O, Ribera d’Alcala M (2011) Water masses as a unifying framework for understanding the Southern Ocean carbon cycle. Biogeosciences 8:1031–1052. doi: 10.5194/bg-8-1031-2011 CrossRefGoogle Scholar
  21. Johns TC, Royer J-F, Höschel I, Huebener H, Roeckner E, Manzini E, May W, Dufresne J-L, Otterå OH, van Vuuren DP, Salas y Melia D, Giorgetta M, Denvil S, Yang S, Fogli PG, Körper J, Tjiputra JF, Stehfest E, Hewitt CD (2011) Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment. Clim Dyn 37:1975–2003. doi: 10.1007/s00382-011-1005-5 CrossRefGoogle Scholar
  22. Kang SM, Polvani LM, Fyfe JC, Sigmond M (2011) Impact of polar ozone depletion on subtropical precipitation. Science 332:951–954CrossRefGoogle Scholar
  23. Karpechko AY, Manzini E (2012) Stratospheric influence on tropospheric climate change in the Northern Hemisphere. J Geophys Res 117:D05133. doi: 10.1029/2011JD017036 CrossRefGoogle Scholar
  24. Kidston J, Gerber EP (2010) Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys Res Lett 37:9708. doi: 10.1029/2010GL042873 Google Scholar
  25. Kushner PJ, Polvani LM (2004) Stratosphere–troposphere coupling in a relatively simple AGCM: the role of eddies. J Clim 17:629–639CrossRefGoogle Scholar
  26. Kushner PJ, Held IM, Delworth TL (2001) Southern Hemisphere atmospheric circulation response to global warming. J Clim 14:2238–2249CrossRefGoogle Scholar
  27. Le Quéré C et al (2007) Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316:1735–1738. doi: 10.1126/science.1136188 CrossRefGoogle Scholar
  28. Lenton A, Codron F, Bopp L, Metzl N, Cadule P, Tagliabue A, Le Sommer J (2009) Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification. Geophys Res Lett 36:L12606. doi: 10.1029/2009GL038227 CrossRefGoogle Scholar
  29. Lovenduski NS, Ito T (2009) The future evolution of the Southern Ocean CO2 sink. J Mar Res 67:597–617. doi: 10.1357/002224009791218832 CrossRefGoogle Scholar
  30. Lovenduski NS, Gruber N, Doney SC (2008) Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Global Biogeochem Cycles 22:GB3016. doi: 10.1029/2007GB003139 CrossRefGoogle Scholar
  31. Madec G, Delecluse P, Imbard M, Levy C (1998) OPA8.1 ocean general circulation model reference manual, Notes du pole de modelisation, IPSL, France,
  32. Manzini E, Steil B, Brühl C, Giorgetta MA, Krüger K (2003) A new interactive chemistry-climate model: 2. Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases and implications for recent stratospheric cooling. J Geophys Res 108(D14):4429. doi: 10.1029/2002JD002977 CrossRefGoogle Scholar
  33. Manzini E, Giorgetta MA, Esch M, Kornblueh L, Roeckner E (2006) The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the MAECHAM5 model. J Clim 19:3863–3881. doi: 10.1175/JCLI3826.1 CrossRefGoogle Scholar
  34. Manzini E, Cagnazzo C, Fogli PG, Bellucci A, Müller WA (2012) Stratosphere-troposphere coupling at inter-decadal time scales: implications for the North Atlantic Ocean. Geophys Res Lett 39:L05801. doi: 10.1029/2011GL050771 CrossRefGoogle Scholar
  35. McLandress C, Jonsson AI, Plummer DA, Reader MC, Scinocca JF, Shepherd TG (2010) Separating the dynamical effects of climate change and ozone depletion. Part I: southern Hemisphere stratosphere. J Clim 23:5002–5020CrossRefGoogle Scholar
  36. Meredith MP, Naveira Garabato AC, Hogg AM, Farneti R (2012) Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. J Clim 25:99–110. doi: 10.1175/2011JCLI4204.1 CrossRefGoogle Scholar
  37. Orr A, Bracegirdle TJ, Hosking SJ (2012) Possible dynamical mechanisms for Southern Hemisphere climate change dur to the ozone hole. J Atmos Sci 69:2917–2932. doi: 10.1175/JAS-D-11-0210.1 CrossRefGoogle Scholar
  38. Patara L, Vichi M, Masina S, Fogli PG, Manzini E (2012) Global response to solar radiation absorbed by phytoplankton in a coupled climate model. Clim Dyn 39(7):1951–1968. doi: 10.1007/s00382-012-1300-9 CrossRefGoogle Scholar
  39. Perlwitz J, Pawson S, Fogt RL, Nielsen JE, Neff WD (2008) Impact of stratospheric ozone recovery on Antarctic climate. Geophys Res Lett 35:L08714. doi: 10.1029/2008GL033317 CrossRefGoogle Scholar
  40. Polvani LM, Waugh DW, Correa GJP, Son S-W (2011a) Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J Clim 24:795–812CrossRefGoogle Scholar
  41. Polvani LM, Previdi M, Deser C (2011b) Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys Res Lett 38:L04707. doi: 10.1029/2011GL046712 CrossRefGoogle Scholar
  42. Randel WJ, Wu F (1999) A stratospheric ozone trends data set for global modeling studies. Geophys Res Lett 26:3089–3092CrossRefGoogle Scholar
  43. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791CrossRefGoogle Scholar
  44. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305(5682):367–371. doi: 10.1126/science.1097403 CrossRefGoogle Scholar
  45. Scaife AA, Knight JR, Vallis GK, Folland CK (2005) A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys Res Lett 32:L18715. doi: 10.1029/2005GL023226 CrossRefGoogle Scholar
  46. Scaife AA et al (2012) Climate change projections and stratosphere–troposphere interaction. Clim Dyn. doi: 10.1007/s00382-011-1080-7 Google Scholar
  47. Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Fogli PG, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high resolution coupled general circulation model. J Clim 24:4368–4384. doi: 10.1175/2011JCLI4104.1 CrossRefGoogle Scholar
  48. Seferian R, Iudicone D, Bopp L, Roy T, Madec G (2012) Water mass analysis of effect of climate change on air–sea CO2 fluxes: the Southern Ocean. J Clim 24:3894–3908. doi: 10.1175/JCLI-D-11-00291.1 CrossRefGoogle Scholar
  49. Sigmond M, Fyfe JC (2010) Has the ozone hole contributed to increased Antarctic sea ice extent? Geophys Res Lett 37:L18502. doi: 10.1029/2010GL044301 Google Scholar
  50. Solomon S (1999) Stratospheric ozone depletion: a review of concepts and history. Rev Geophys 37(3):275–316. doi: 10.1029/1999RG900008 CrossRefGoogle Scholar
  51. Son S-W et al (2008) The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science 320:1486–1489. doi: 10.1126/science.1155939 CrossRefGoogle Scholar
  52. Son SW et al (2010) Impact of stratospheric ozone on the Southern Hemisphere circulation changes: a multimodel assessment. J Geophys Res 115:D00M07. doi: 10.1029/2010JD014271 CrossRefGoogle Scholar
  53. Song Y, Robinson WA (2004) Dynamical mechanisms for stratospheric influences on the troposphere. J Atmos Sci 61:1711–1725CrossRefGoogle Scholar
  54. SPARC CCMVal (2010), SPARC report on the evaluation of chemistry–climate models. V. Eyring, T. G. Shepherd, and D. W. Waugh, Eds., SPARC Rep. 5, WCRP-132, WMO/TD– 1526. Available online at
  55. Swart NC, Fyfe JC (2011) Ocean carbon uptake and storage influenced by wind bias in global climate models. Nat Clim Change 2:47–52CrossRefGoogle Scholar
  56. Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296:895–899CrossRefGoogle Scholar
  57. Thompson DWJ, Solomon S, Kushner PJ, England MH, Grise KM, Karoly DJ (2011) Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat Geosci 4:741–749CrossRefGoogle Scholar
  58. Toggweiler JR (2009) Shifting westerlies. Science 323(5920). doi: 10.1126/science.1169823
  59. Turner J et al (2009) Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys Res Lett 36:L08502. doi: 10.1029/2009GL037524
  60. Uppala S, Kallberg P, Simmons A, Andrae U, da Costa Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins B, Isaksen L, Janssen P, Jenne R, McNally A, Mahfouf J-F, Morcrette J–J, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Quart J Roy Meteor Soc 131:2961–3012. doi: 10.1256/qj.04.17 CrossRefGoogle Scholar
  61. Vichi M, Pinardi N, Masina S (2007) A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: theory. J Mar Sys 64:89–109CrossRefGoogle Scholar
  62. Vichi M, Manzini E, Fogli PG, Alessandri A, Patara L, Scoccimarro E, Masina S, Navarra A (2011) Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario. Clim Dyn 37:1929–1947. doi: 10.1007/s00382-011-1079-0 CrossRefGoogle Scholar
  63. Wanninkhof R (1992) Relationship between windspeed and gas exchange over the ocean. J Geophys Res 97:7373–7382CrossRefGoogle Scholar
  64. Zickfeld K, Fyfe JC, Saenko OA, Eby M, Weaver AJ (2007) Response of the global carbon cycle to human-induced changes in Southern Hemisphere winds. Geophys Res Lett 34:L12712. doi: 10.1029/2006GL028797 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chiara Cagnazzo
    • 1
    • 3
    Email author
  • Elisa Manzini
    • 2
  • Pier Giuseppe Fogli
    • 3
  • Marcello Vichi
    • 3
    • 5
  • Paolo Davini
    • 3
    • 4
  1. 1.Istituto di Scienze dell’Atmosfera e del Clima, ISAC-CNRRomeItaly
  2. 2.Max Planck Institute for MeteorologyHamburgGermany
  3. 3.Centro Euro-Mediterraneo sui Cambiamenti ClimaticiBolognaItaly
  4. 4.Ca’ Foscari UniversityVeniceItaly
  5. 5.Istituto Nazionale di Geofisica e VulcanologiaBolognaItaly

Personalised recommendations