Climate Dynamics

, Volume 41, Issue 3–4, pp 803–817 | Cite as

How well do CMIP5 Earth System Models simulate present climate conditions in Europe and Africa?

A performance comparison for the downscaling community
  • S. Brands
  • S. Herrera
  • J. Fernández
  • J. M. Gutiérrez
Article

Abstract

The present study assesses the ability of seven Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 5 to reproduce present climate conditions in Europe and Africa. This is done from a downscaling perspective, taking into account the requirements of both statistical and dynamical approaches. ECMWF’s ERA-Interim reanalysis is used as reference for an evaluation of circulation, temperature and humidity variables on daily timescale, which is based on distributional similarity scores. To additionally obtain an estimate of reanalysis uncertainty, ERA-Interim’s deviation from the Japanese Meteorological Agency JRA-25 reanalysis is calculated. Areas with considerable differences between both reanalyses do not allow for a proper assessment, since ESM performance is sensitive to the choice of reanalysis. For use in statistical downscaling studies, ESM performance is computed on the grid-box scale and mapped over a large spatial domain covering Europe and Africa, additionally highlighting those regions where significant distributional differences remain even for the centered/zero-mean time series. For use in dynamical downscaling studies, performance is specifically assessed along the lateral boundaries of the three CORDEX domains defined for Europe, the Mediterranean Basin and Africa.

Keywords

CMIP5 Earth System Models Performance Present climate Downscaling Africa Europe 

Notes

Acknowledgments

S.B. would like to thank the CSIC JAE-PREDOC programme for financial support. J.F. and J.M.G. acknowledge financial support from the Spanish R&D&I programme through grants CGL2010-22158-C02 (CORWES project) and CGL2010- 21869 (EXTREMBLES project) and from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement 243888 (FUME Project). All authors acknowledge and appreciate the free availability of the ERA-Interim and JRA-25 reanalysis datasets, as well as the GCM datasets provided by the ESGF web portals. They also are thankful to the anonymous reviewers for their helpful comments on the former version of this manuscript.

References

  1. Betts AK, Koehler M, Zhang Y (2009) Comparison of river basin hydrometeorology in ERA-Interim and ERA-40 reanalyses with observations. J Geophys Res 114. doi:10.1029/2008JD010761
  2. Brands S, Herrera S, San-Martin D, Gutierrez JM (2011a) Validation of the ENSEMBLES global climate models over southwestern Europe using probability density functions, from a downscaling perspective. Clim Res 48(2–3):145–161. doi:10.3354/cr00995 CrossRefGoogle Scholar
  3. Brands S, Taboada JJ, Cofino AS, Sauter T, Schneider C (2011b) Statistical downscaling of daily temperatures in the NW Iberian Peninsula from global climate models: validation and future scenarios. Clim Res 48(2–3):163–176. doi:10.3354/cr00906 CrossRefGoogle Scholar
  4. Brands S, Gutierrez JM, Herrera S, Cofino AS (2012) On the use of reanalysis data for downscaling. J Clim 25(7):2517–2526 doi:10.1175/JCLI-D-11-00251.1 CrossRefGoogle Scholar
  5. Cavazos T, Hewitson B (2005) Performance of NCEP-NCAR reanalysis variables in statistical downscaling of daily precipitation. Clim Res 28:95–107CrossRefGoogle Scholar
  6. Charles SP, Bari MA, Kitsios A, Bates BC (2007) Effect of GCM bias on downscaled precipitation and runoff projections for the Serpentine catchment, Western Australia. Int J Climatol 27(12):1673–1690. doi:10.1002/joc.1508 CrossRefGoogle Scholar
  7. Chylek P, Li J, Dubey M, Wang M, Lesins G (2011) Observed and model simulated 20th century arctic temperature variability: Canadian earth system model CanESM. Atmos Chem Phys Discuss 11:22893–2290. doi:10.5194/acpd-11-22893-201 CrossRefGoogle Scholar
  8. Colette A, Vautard R, Vrac M (2012) Regional climate downscaling with prior statistical correction of the global climate forcing. Geophys Res Lett 39. doi:10.1029/2012GL052258
  9. Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S (2011) Development and evaluation of an Earth-System model-HadGEM2. Geosci Model Dev 4(4):1051–1075. doi:10.5194/gmd-4-1051-2011 CrossRefGoogle Scholar
  10. Cook K (1999) Generation of the African easterly jet and its role in determining West African precipitation. J Clim 12(5, Part 1):1165–1184. doi:10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO;2 CrossRefGoogle Scholar
  11. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Koehler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656, Part a):553–597. doi:10.1002/qj.828 CrossRefGoogle Scholar
  12. Dufresne JL, Foujols MA, Denvil S, Caubel A, Marti O (submitted) Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim DynGoogle Scholar
  13. Eden JM, Widmann M, Grawe D, Rast S (2012) Skill, correction, and downscaling of GCM-simulated precipitation. J Clim 25(11):3970–3984. doi:10.1175/JCLI-D-11-00254.1 CrossRefGoogle Scholar
  14. Fernández J, Montávez JP, Saénz J, González-Rouco JF, Zorita E (2007) Sensitivity of the MM5 mesoscale model to physical parameterizations for regional climate studies: annual cycle. J Geophys Res 112(D4). doi:10.1029/2005JD006649
  15. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27(12):1547–1578. doi:10.1002/joc.1556 CrossRefGoogle Scholar
  16. Giorgi F, Francisco R (2000) Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HadCM2 coupled AOGCM. Clim Dyn 16(2–3):169–182. doi:10.1007/PL00013733 CrossRefGoogle Scholar
  17. Giorgi F, Mearns L (1991) Approaches to the simulation of regional climate change—a review. Rev Geophys 29(2):191–216CrossRefGoogle Scholar
  18. Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113(D6). doi:10.1029/2007JD008972
  19. Hanssen-Bauer I, Achberger C, Benestad R, Chen D, Forland E (2005) Statistical downscaling of climate scenarios over Scandinavia. Clim Res 29(3):255–268. doi:10.3354/cr029255 CrossRefGoogle Scholar
  20. Hewitson BC, Crane RG (1996) Climate downscaling: techniques and application. Clim Res 7(2):85–95. doi:10.3354/cr007085Google Scholar
  21. Hofer M, Marzeion B, Molg T (2012) Comparing the skill of different reanalyses and their ensembles as predictors for daily air temperature on a glaciated mountain (Peru). Clim Dyn 39(7–8):1969–1980. doi:10.1007/s00382-012-1501-2
  22. John VO, Soden BJ (2007) Temperature and humidity biases in global climate models and their impact on climate feedbacks. Geophys Res Lett 34(18). doi:10.1029/2007GL030429
  23. Jones C, Giorgi F, Asrar G (2011) The coordinated regional downscaling experiment: CORDEX an international downscaling link to CMIP5. CLIVAR Exch Newsl 16:34–40Google Scholar
  24. Jungclaus JH, Lorenz SJ, Timmreck C, Reick CH, Brovkin V, Six K, Segschneider J, Giorgetta MA, Crowley TJ, Pongratz J, Krivova NA, Vieira LE, Solanki SK, Klocke D, Botzet M, Esch M, Gayler V, Haak H, Raddatz TJ, Roeckner E, Schnur R, Widmann H, Claussen M, Stevens B, Marotzke J (2010) Climate and carbon-cycle variability over the last millennium. Clim Past 6(5):723–737. doi:10.5194/cp-6-723-2010 CrossRefGoogle Scholar
  25. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471Google Scholar
  26. Kirkevag A, Iversen T, Seland O, Debernard JB, Storelvmo T, Kristjansson JE (2008) Aerosol-cloud-climate interactions in the climate model CAM-Oslo. Tellus Ser A Dyn Meteorol Oceanol 60(3):492–512. doi:10.1111/j.1600-0870.2008.00313.x CrossRefGoogle Scholar
  27. Koukidis EN, Berg AA (2009) Sensitivity of the statistical downscaling model (SDSM) to reanalysis products. Atmos Ocean 47(1):1–18. doi:10.3137/AO924.2009 CrossRefGoogle Scholar
  28. Laprise R (2008) Regional climate modelling. J Comput Phys 227(7):3641–3666. doi:10.1016/j.jcp.2006.10.024 CrossRefGoogle Scholar
  29. Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themessl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48. doi:10.1029/2009RG000314
  30. Maraun D, Osborn T, Rust H (2012) The influence of synoptic airflow on UK daily precipitation extremes. Part II: climate model and E-OBS data validation. Clim Dyn 39(1–2):287–301. doi:10.1007/s00382-011-1176-0
  31. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756. doi:10.1038/nature08823 CrossRefGoogle Scholar
  32. Onogi K, Tslttsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kaalhori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85(3):369–432. doi:10.2151/jmsj.85.369 CrossRefGoogle Scholar
  33. Plavcova E, Kysely J (2012) Atmospheric circulation in regional climate models over Central Europe: links to surface air temperature and the influence of driving data. Clim Dyn 39(7–8):1681–1695. doi:10.1007/s00382-011-1278-8
  34. Raddatz TJ, Reick CH, Knorr W, Kattge J, Roeckner E, Schnur R, Schnitzler KG, Wetzel P, Jungclaus J (2007) Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century? Clim Dyn 29(6):565–574. doi:10.1007/s00382-007-0247-8 CrossRefGoogle Scholar
  35. Raisanen J (2007) How reliable are climate models? Tellus Ser A Dyn Meteorol Oceanol 59(1):2–29. doi:10.1111/j.1600-0870.2006.00211.x CrossRefGoogle Scholar
  36. Sauter T, Venema V (2011) Natural three-dimensional predictor domains for statistical precipitation downscaling. J Clim 24(23):6132–6145. doi:10.1175/2011JCLI4155.1 CrossRefGoogle Scholar
  37. Seland O, Iversen T, Kirkevag A, Storelvmo T (2008) Aerosol-climate interactions in the CAM-Oslo atmospheric GCM and investigation of associated basic shortcomings. Tellus Ser A Dyn Meteorol Oceanol 60(3):459–491. doi:10.1111/j.1600-0870.2008.00318.x CrossRefGoogle Scholar
  38. Sterl A (2004) On the (in)homogeneity of reanalysis products. J Clim 17(19):3866–3873CrossRefGoogle Scholar
  39. von Storch H, Langenberg H, Feser F (2000) A spectral nudging technique for dynamical downscaling purposes. Mon Weather Rev 128(10):3664–3673. doi:10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2 CrossRefGoogle Scholar
  40. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi:10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  41. Timbal B, Dufour A, McAvaney B (2003) An estimate of future climate change for western France using a statistical downscaling technique. Clim Dyn 20(7–8):807–823. doi:10.1007/s00382-002-0298-9 Google Scholar
  42. van Ulden A, van Oldenborgh G (2006) Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe. Atmos Chem Phys 6:863–881CrossRefGoogle Scholar
  43. Uppala S, Kallberg P, Simmons A, Andrae U, Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins B, Isaksen L, Janssen P, Jenne R, McNally A, Mahfouf J, Morcrette J, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612, Part B):2961–3012. doi:10.1256/qj.04.176 CrossRefGoogle Scholar
  44. Vial J, Osborn J (2011) Assessment of atmosphere-ocean general circulation model simulations of winter northern hemisphere atmospheric blocking. Clim Dyn. doi:10.1007/s00382-011-1177-z
  45. Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C (2011) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn. doi:10.1007/s00382-011-1259-y
  46. Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4(4):845–872. doi:10.5194/gmd-4-845-2011 CrossRefGoogle Scholar
  47. Wilby R, Charles S, Zorita E, Timbal B, Whetton P, Mearns L (2004) Guidelines for uses of climate scenarios developed from statistical downscaling methods. Supporting material, http://www.narccap.ucar.edu/doc/tgica-guidance-2004.pdf
  48. Wilks D (2006) Statistical methods in the atmospheric sciences, 2 edn. Elsevier, AmsterdamGoogle Scholar
  49. Winkler JA, Guentchev GS, Liszewska M, Perdinan A, Tan PN (2011a) Climate scenario development and applications for local/regional climate change impact assessments: An overview for the non-climate scientist. Geogr Compass 5(6):301–328. doi:10.1111/j.1749-8198.2011.00426.x CrossRefGoogle Scholar
  50. Winkler JA, Guentchev GS, Perdinan A, Tan PN, Zhong S, Liszewska M, Abraham Z, Niedzwiedz T, Ustrnul Z (2011b) Climate scenario development and applications for local/regional climate change impact assessments: an overview for the non-climate scientist. Geogr Compass 5(6):275–300. doi:10.1111/j.1749-8198.2011.00425.x CrossRefGoogle Scholar
  51. Xu Z, Yang ZL (2012) An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations. J Clim 25(18):6271–6286. doi:10.1175/JCLI-D-12-00005.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Brands
    • 1
  • S. Herrera
    • 2
  • J. Fernández
    • 3
  • J. M. Gutiérrez
    • 1
  1. 1.Instituto de Física de Cantabria (UC-CSIC)SantanderSpain
  2. 2.Predictia Intelligent Data SolutionsSantanderSpain
  3. 3.Dept. of Applied Mathematics and Comp. Sci.Universidad de CantabriaSantanderSpain

Personalised recommendations