Climate Dynamics

, Volume 42, Issue 3–4, pp 1053–1066 | Cite as

Mediterranean warm-core cyclones in a warmer world

  • Kevin Walsh
  • Filippo Giorgi
  • Erika Coppola


Regional climate model projections over the Mediterranean region are analysed for the presence of intense, warm-core lows that share some of the characteristics of tropical cyclones. The results indicate that the number of such systems decreases in a warmer world, particularly in winter. Comparison of the simulated numbers to changes in relevant climate diagnostics suggests that numbers decrease due to an increasingly hostile environment for storm formation, combined with a general poleward shift in the incidence of wintertime lows over western Europe.


Cyclone Tropical Cyclone Maximum Wind Speed Vertical Wind Shear Regional Climate Model Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The first author would like to thank the University of Melbourne and ICTP, which both provided partial funding for his visit to ICTP in October–December 2010. The authors would also like to thank the Commonwealth Scientific and Industrial Research Organisation (CSIRO) for the use of their tropical cyclone tracking scheme.


  1. Bister M, Emanuel K (1998) Dissipative heating and hurricane intensity. Meteorol Atmos Phys 50:233–240CrossRefGoogle Scholar
  2. Briegel LM, Frank WM (1997) Large-scale influences on tropical cyclogenesis in the western North Pacific. Mon Weather Rev 125:1397–1413CrossRefGoogle Scholar
  3. Campins J, Genoves A, Picornell MA, Jansa A (2010) Climatology of Mediterranean cyclones using the ERA-40 dataset. Int J Climatol 31:1596–1614Google Scholar
  4. Cavicchia L, von Storch H (2012) The simulation of medicanes in a high-resolution regional climate model. Clim Dyn 39:2273–2290CrossRefGoogle Scholar
  5. Christensen J, Carter T, Giorgi F (2002) PRUDENCE employs new methods to assess European climate change. EOS 83:147CrossRefGoogle Scholar
  6. Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere–atmosphere transfer scheme (BATS) version 1E as coupled to the NCAR community climate model. NCAR Tech Rep. TN-387+STR, p 72Google Scholar
  7. Eady ET (1949) Long waves and cyclone waves. Tellus 1:33–52CrossRefGoogle Scholar
  8. Efimov VV, Stanichnyi SV, Shokurov MV, Yarovaya DA (2008) Observations of a quasi-tropical cyclone over the Black Sea. Russ Meteorol Hydrol 33:233–239CrossRefGoogle Scholar
  9. Emanuel K (2005) Genesis and maintenance of Mediterranean hurricanes. Adv Geosci 2:217–220CrossRefGoogle Scholar
  10. Fita L, Romero R, Luque A, Emanuel K, Ramis C (2007) Analysis of the environments of seven Mediterranean storms using an axisymmetric, nonhydrostatic cloud model. Nat Hazards Earth Syst Sci 7:41–56CrossRefGoogle Scholar
  11. Flocas HA, Simmonds I, Kouroutzoglou J, Keay K, Hatzaki M, Bricolas V, Demosthenes A (2010) On cyclonic tracks over the eastern Mediterranean. J Clim 23:5243–5257CrossRefGoogle Scholar
  12. Gaertner MA, Jacob D, Gil V, Domınguez M, Padorno E, Sanchez E, Castro M (2007) Tropical cyclones over the Mediterranean Sea in climate change simulations. Geophys Res Lett 34. doi: 10.1029/2007GL029977
  13. Gaertner MA, Gil V, Romera R, Domínguez M, Sánchez E, Gallardo C (2011) Climate change scenarios and risk of tropical cyclones over the Mediterranean Sea: analysis with ENSEMBLES data. Presented at the 3rd International Summit on Hurricanes and Climate Change, June 27–July 2, 2011, RhodesGoogle Scholar
  14. Giorgi F, Coppola E (2007) European climate-change oscillation (ECO). Geophys Res Lett 34:L21703CrossRefGoogle Scholar
  15. Giorgi F, Marinucci MR, Bates GT (1993a) Development of a second generation regional climate model (REGCM2). Part I: boundary layer and radiative transfer processes. Mon Weather Rev 121:2794–2813CrossRefGoogle Scholar
  16. Giorgi F, Marinucci MR, Bates GT, DeCanio G (1993b) Development of a second generation regional climate model (REGCM2). Part II: convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832CrossRefGoogle Scholar
  17. Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787CrossRefGoogle Scholar
  18. Hart R (2003) A cyclone phase space derived from thermal wind and thermal asymmetry. Mon Weather Rev 131:585–616CrossRefGoogle Scholar
  19. Haurwitz B (1935) The height of tropical cyclones and the eye of the storm. Mon Weather Rev 63:45–49CrossRefGoogle Scholar
  20. Hewitt CD, Griggs DJ (2004) Ensembles-based predictions of climate changes and their impacts. EOS 85:566CrossRefGoogle Scholar
  21. Holtslag AAM, de Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575CrossRefGoogle Scholar
  22. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR community climate model (CCM3).NCAR Tech Rep. TN-420+STR, p 152Google Scholar
  23. Kistler K, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267CrossRefGoogle Scholar
  24. Lagouvardos K, Kotroni V, Nickovic S, Jovic D, Kallos G, Tremback CJ (1999) Observations and model simulations of a winter sub-synoptic vortex over the central Mediterranean. Meteorol Appl 6:371–383CrossRefGoogle Scholar
  25. Landman WA, Seth A, Camargo SJ (2005) The effect of regional climate model domain choice on the simulation of tropical cyclone-like vortices in the southwestern Indian Ocean. J Clim 18:1263–1274CrossRefGoogle Scholar
  26. Lavaysse C, Flamant C, Janicot S, Knippertz P (2010) Links between African easterly waves, midlatitude circulation and intraseasonal pulsations of the West African heat low. Q J R Meteorol Soc 136:141–158CrossRefGoogle Scholar
  27. Lionello P, Boldrin U, Giorgi F (2008) Future changes in cyclone climatology over Europe as inferred from a regional climate simulation. Clim Dyn 30:657–671CrossRefGoogle Scholar
  28. Maheras P, Flocas HA, Patrikas I, Anagnostopoulou C (2001) A 40-year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution. Int J Climatol 21:109–130CrossRefGoogle Scholar
  29. Mayengon R (1984) Warm core cyclones in the Mediterranean. Mar Wea Log 28:6–9Google Scholar
  30. Murray RJ, Simmonds I (1991a) A numerical scheme for tracking cyclone centres from digital data. Part I: development and operation of the scheme. Aust Meteor Mag 39:155–166Google Scholar
  31. Murray RJ, Simmonds I (1991b) A numerical scheme for tracking cyclone centres from digital data. Part II: application to January and July general circulation model simulations. Aust Meteor Mag 39:167–180Google Scholar
  32. Nakicenovic N, Swart R (2000) IPCC special report on emissions scenarios. Cambridge University Press, Cambridge 570 pGoogle Scholar
  33. Paciorek CJ, Risbey JS, Ventura V, Rosen RD (2002) Multiple indices of Northern Hemisphere cyclone activity, winters 1949–99. J Clim 15:1573–1590CrossRefGoogle Scholar
  34. Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional scale water and energy budgets: influence of a new moist physics scheme within RegCM. J Geophys Res 105:29579–29594CrossRefGoogle Scholar
  35. Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Rauscher SA, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Bell JS, Diffenbaugh NS, Karmacharya J, Konare A, Martinez D, Da Rocha RP, Sloan LC, Steiner AL (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409CrossRefGoogle Scholar
  36. Pezza AB, Simmonds I (2005) The first South Atlantic hurricane: unprecedented blocking, low shear and climate change. Geophys Res Lett 32:L15712. doi: 10.1029/2005GL023390 CrossRefGoogle Scholar
  37. Picornell MA, Jansa J, Genove A, Campins J (2001) Automated database of mesocyclones from the HIRLAM-0.5 analyses in the western Mediterranean. Int J Climatol 21:335–354CrossRefGoogle Scholar
  38. Pytharoulis I, Craig GC, Ballard SP (2000) The hurricane-like Mediterranean cyclone of January 1995. Meteorol Appl 7:261–279CrossRefGoogle Scholar
  39. Reale O, Atlas R (2001) Tropical cyclone-like vortices in the extratropics: observational evidence and synoptic analysis. Wea Forecast 16:7–34CrossRefGoogle Scholar
  40. Roeckner E, Bauml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: model description. Rep. No. 349, Max-Planck-Institut für Meteorologie, Hamburg, Germany, p 127Google Scholar
  41. Schepanski K, Knippertz P (2011) Soudano–Saharan depressions and their importance for precipitation and dust: a new perspective on a classical synoptic concept. Q J R Meteorol Soc 137:1431–1445CrossRefGoogle Scholar
  42. Shapiro LJ (1987) Month-to-month variability of Atlantic tropical circulation and its relationship to tropical cyclone formation. Mon Weather Rev 115:2598–2614CrossRefGoogle Scholar
  43. Shapiro MA, Keyser D (1990) Fronts, jet streams and the tropopause. In: Newton CW, Holopainen EO (eds) Extratropical cyclones, the Erik Palmen memorial volume. American Meteorological Society, Boston, pp 167–191Google Scholar
  44. Simmonds I, Lim E-P (2009) Biases in the calculation of Southern Hemisphere mean baroclinic eddy growth rate. Geophys Res Lett 36:L01707. doi: 10.1029/2008GL036320 Google Scholar
  45. Tous M, Romero R (2011) Medicanes: criteris de catalogació i exploració dels ambient meteorològics. Tethys 8:53–61Google Scholar
  46. Tous M, Romero R (2013) Meteorological environments associated with medicane development. Int J Climatol 33:1–14CrossRefGoogle Scholar
  47. Tous M, Romero R, Ramis C (2010) Medicanes: database and environmental parameters. EGU Abstracts 2010, vol 12, EGU2010-12620Google Scholar
  48. Ulbrich U, Christoph M (1999) A shift in the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas. Clim Dyn 15:551–559CrossRefGoogle Scholar
  49. Uppala SM, KÅllberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  50. Vallis GK (2006) Atmospheric and oceanic dynamics: fundamentals and large-scale circulation. Cambridge University Press, New York 744 pCrossRefGoogle Scholar
  51. Walsh KJE, Nguyen K-C, McGregor JL (2004) Fine-resolution regional climate model simulations of the impact of climate change on tropical cyclones near Australia. Clim Dyn 22:47–56CrossRefGoogle Scholar
  52. Ziv B, Dayan U, Sharon D (2005) A mid-winter, tropical extreme flood-producing storm in southern Israel: synoptic scale analysis. Meteorol Atmos Phys 88:53–63CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Earth SciencesUniversity of MelbourneParkvilleAustralia
  2. 2.International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations