Climate Dynamics

, Volume 42, Issue 1–2, pp 37–58 | Cite as

Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models

  • Valentina RadićEmail author
  • Andrew Bliss
  • A. Cody Beedlow
  • Regine Hock
  • Evan Miles
  • J. Graham Cogley


A large component of present-day sea-level rise is due to the melt of glaciers other than the ice sheets. Recent projections of their contribution to global sea-level rise for the twenty-first century range between 70 and 180 mm, but bear significant uncertainty due to poor glacier inventory and lack of hypsometric data. Here, we aim to update the projections and improve quantification of their uncertainties by using a recently released global inventory containing outlines of almost every glacier in the world. We model volume change for each glacier in response to transient spatially-differentiated temperature and precipitation projections from 14 global climate models with two emission scenarios (RCP4.5 and RCP8.5) prepared for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The multi-model mean suggests sea-level rise of 155 ± 41 mm (RCP4.5) and 216 ± 44 mm (RCP8.5) over the period 2006–2100, reducing the current global glacier volume by 29 or 41 %. The largest contributors to projected global volume loss are the glaciers in the Canadian and Russian Arctic, Alaska, and glaciers peripheral to the Antarctic and Greenland ice sheets. Although small contributors to global volume loss, glaciers in Central Europe, low-latitude South America, Caucasus, North Asia, and Western Canada and US are projected to lose more than 80 % of their volume by 2100. However, large uncertainties in the projections remain due to the choice of global climate model and emission scenario. With a series of sensitivity tests we quantify additional uncertainties due to the calibration of our model with sparsely observed glacier mass changes. This gives an upper bound for the uncertainty range of ±84 mm sea-level rise by 2100 for each projection.


Regional and global glacier mass changes Projections of sea level rise Global climate models 



Funding was provided by NASA grant (NNH10Z1A001N and NNX11AO23G) and NSF (grant EAR-0943742). We thank the two anonymous reviewers for their comments which helped us to significantly improve the manuscript.

Supplementary material

382_2013_1719_MOESM1_ESM.pdf (114 kb)
Supplementary material 1 (PDF 115 kb)


  1. Adhikari S, Marshall SJ (2012) Glacier volume-area relation for high-order mechanics and transient glacier states. Geophys Res Lett 39:L16505. doi: 10.1029/2012GL052712 CrossRefGoogle Scholar
  2. Arendt A et al (2012) Randolph glacier inventory: a dataset of global glacier outlines version: 2.0, 11 June 2012, GLIMS Technical ReportGoogle Scholar
  3. Bahr DB, Meier MF, Peckham SD (1997) The physical basis of glacier volume-area scaling. J Geophys Res 102(B9):20355–20362CrossRefGoogle Scholar
  4. Beck C, Grieser J, Rudolf B (2005) A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. German Weather Service, OffenbachGoogle Scholar
  5. Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill, New YorkGoogle Scholar
  6. Bliss A, Hock R, Cogley JG (2013) A new inventory of mountain glaciers and ice caps for the Antarctic periphery. Ann Glaciol 54(63):191–199. doi: 10.3189/2013AoG63A377 Google Scholar
  7. Burgess D, Sharp M, Mair D, Dowdeswell J, Benham T (2005) Flow dynamics and iceberg calving rates of Devon Ice Cap, Nunavut, Canada. J Glaciol 51:219–230CrossRefGoogle Scholar
  8. Chen J, Ohmura A (1990) Estimation of Alpine glacier water resources and their change since the 1870’s. Int Assoc Hydrol Sci Publ 193:127–135Google Scholar
  9. Clarke GKC, Anslow FS, Jarosch AH, Radić V, Menounos B, Bolch T, Berthier E (2012) Ice volume and subglacial topography for western Canadian glaciers from mass balance fields, thinning rates, and a bed stress model. J Climate. doi: 10.1175/JCLI-D-12-00513.1 Google Scholar
  10. Cogley JG (2009a) A more complete version of the World Glacier Inventory. Ann Glaciol 50(53):32–38CrossRefGoogle Scholar
  11. Cogley JG (2009b) Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann Glaciol 50(50):96–100CrossRefGoogle Scholar
  12. Cogley JG et al (2011) Glossary of glacier mass balance and related terms. UNESCO-IHPGoogle Scholar
  13. Columbus J, Sirguey P, Tenzer R (2011) A free, fully assessed 15-m DEM for New Zealand. Survey Q 66:16–19Google Scholar
  14. de Woul M, Hock R (2005) Static mass balance sensitivity of Arctic glaciers and ice caps using a degree-day approach. Ann Glaciol 42:217–224CrossRefGoogle Scholar
  15. Dowdeswell JA, Benham TJ, Strozzi T, Hagen O (2008) Iceberg calving flux and mass balance of the Austfonna ice cap on Nordaustlandet, Svalbard. J Geophys Res 113:F03022CrossRefGoogle Scholar
  16. Dyurgerov MB (2010) Reanalysis of glacier changes: from the IGY to the IPY, 1960–2008. Data Glaciol Stud 108:1–116Google Scholar
  17. Dyurgerov MB, Meier MF (2005) Glaciers and the changing earth system: a 2004 snapshot. INSTARR occasional paper 58, University of Colorado, BoulderGoogle Scholar
  18. Gardner AS, Moholdt G, Cogley JG, Wouters B, Arendt AA, Wahr J, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SRM, Bolch T, Sharp MJ, Hagen JO, van den Broeke M, Paul F (2013) A consensus estimate of glacier contributions to sea level rise: 2003 to 2009. Science (accepted)Google Scholar
  19. Hock R, de Woul M, Radić V, Dyurgerov M (2009) Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys Res Lett 36:L07501. doi: 10.1029/2008GL037020 CrossRefGoogle Scholar
  20. Huss M (2011) Present and future contribution of glaciers to runoff from macroscale drainage basins in Europe. Water Resour Res 47:W07511. doi: 10.1029/2010WR010299 CrossRefGoogle Scholar
  21. Huss M, Funk M, Ohmura A (2009) Strong Alpine melt in the 1940s due to enhanced solar radiation. Geophys Res Lett 36:L23501CrossRefGoogle Scholar
  22. Huss M, Hock R, Bauder A, Funk M (2012) Conventional versus reference-surface mass balance. J Glaciol 58(208):278–286CrossRefGoogle Scholar
  23. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4. Accessed 29 February 2012
  24. Kållberg PW, Simmons AJ, Uppala SM, Fuentes M (2004) The ERA-40 Archive. ERA-40 Project Report Series 17, ECMWF, ReadingGoogle Scholar
  25. Kaser G, Cogley JG, Dyurgerov MB, Meier MF, Ohmura A (2006) Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys Res Lett 33. doi: 10.1029/2006GL027511
  26. Kaser G, Großhauser M, Marzeion B (2010) Contribution potential of glaciers to water availability in different climate regimes. PNAS 107:20223–20227CrossRefGoogle Scholar
  27. Liu HK, Jezek K, Li B, Zhao Z (2001) Radarsat Antarctic mapping project digital elevation model version 2, Digital media. National Snow and Ice Data Center, Boulder.
  28. Lüthi MP (2009) Transient response of idealized glaciers to climate change. J Glaciol 55(193):918–930CrossRefGoogle Scholar
  29. Marzeion B, Jarosch AH, Hofer M (2012) Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 6:1295–1322. doi: 10.5194/tc-6-1295-2012 CrossRefGoogle Scholar
  30. Meier MF, Dyurgerov MB, Rick UK, O’Neel S, Pfeffer WT, Anderson RS, Anderson SP, Glazovsky AF (2007) Glaciers dominate eustatic sea-level rise in 21st century. Science 317:1064–1067CrossRefGoogle Scholar
  31. Moss RH (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi: 10.1038/nature08823 CrossRefGoogle Scholar
  32. Paul F, Haeberli W (2008) Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models. Geophys Res Lett 35:L21502CrossRefGoogle Scholar
  33. Radić V, Hock R (2006) Modelling mass balance and future evolution of glaciers using ERA-40 and climate models—A sensitivity study at Storglaciären, Sweden. J Geophys Res 111:F03003Google Scholar
  34. Radić V, Hock R (2010) Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J Geophys Res 115:F01010. doi: 10.1029/2009JF001373 Google Scholar
  35. Radić V, Hock R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat Geosci 4:91–94. doi: 10.1038/NGEO1052 CrossRefGoogle Scholar
  36. Radić V, Hock R, Oerlemans J (2007) Volume-area scaling vs flowline modelling in glacier volume projections. Ann Glaciol 46:234–240CrossRefGoogle Scholar
  37. Radić V, Hock R, Oerlemans J (2008) Analysis of scaling methods in deriving future volume evolutions of valley glaciers. J Glaciol 54(187):601–612CrossRefGoogle Scholar
  38. Randall DA et al (2007) Climate models and their evaluation. In: Solomon S et al (eds) IPCC climate change 2007: the physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  39. Raper SBC, Braithwaite RJ (2006) Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature 439:311–313. doi: 10.1038/nature04448 CrossRefGoogle Scholar
  40. Rastner PN, Mölg T, Machguth H, Paul F (2012) The first complete glacier inventory for the whole of Greenland. Cryosphere 6:1483–1495. doi: 10.5194/tc-6-1483-2012 CrossRefGoogle Scholar
  41. Schiefer E, Menounos B, Wheate R (2007) Recent volume loss of British Columbia glaciers, Canada. Geophys Res Lett 34:L16503CrossRefGoogle Scholar
  42. Slangen ABA, Katsman CA, van de Wal RSW, Vermeersen LLA, Riva REM (2012) Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Clim Dyn 38:1191–1209. doi: 10.1007/s00382-011-1057-6 CrossRefGoogle Scholar
  43. Tachikawa T, Hato M, Kaku M, Iwasaki A (2011) The characteristics of ASTER GDEM version 2, IGARSSGoogle Scholar
  44. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  45. Woodward J, Sharp M, Arendt A (1997) The influence of superimposed-ice formation on the sensitivity of glacier mass balance to climate change. Ann Glaciol 24:186–190Google Scholar
  46. Zwally HJ, Schutz R, Bentley C, Bufton J, Herring T, Minster J, Spinhirne J, Thomas R (2012) GLAS/ICESat L2 Antarctic and Greenland Ice Sheet Altimetry Data V001. Boulder, CO: National Snow and Ice Data Center. Digital mediaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Valentina Radić
    • 1
    Email author
  • Andrew Bliss
    • 2
  • A. Cody Beedlow
    • 2
  • Regine Hock
    • 2
  • Evan Miles
    • 1
    • 3
  • J. Graham Cogley
    • 4
  1. 1.Earth, Ocean and Atmospheric Sciences DepartmentUniversity of British ColumbiaVancouverCanada
  2. 2.Geophysical InstituteUniversity of Alaska FairbanksFairbanksUSA
  3. 3.Scott Polar Research InstituteUniversity of CambridgeCambridgeUK
  4. 4.Department of GeographyTrent UniversityPeterboroughCanada

Personalised recommendations