Climate Dynamics

, Volume 41, Issue 11–12, pp 3145–3165 | Cite as

On regional dynamical downscaling for the assessment and projection of temperature and precipitation extremes across Tasmania, Australia

  • Christopher J. White
  • Kathleen L. McInnes
  • Robert P. Cechet
  • Stuart P. Corney
  • Michael R. Grose
  • Gregory K. Holz
  • Jack J. Katzfey
  • Nathaniel L. Bindoff
Article

Abstract

The ability of an ensemble of six GCMs, downscaled to a 0.1° lat/lon grid using the Conformal Cubic Atmospheric Model over Tasmania, Australia, to simulate observed extreme temperature and precipitation climatologies and statewide trends is assessed for 1961–2009 using a suite of extreme indices. The downscaled simulations have high skill in reproducing extreme temperatures, with the majority of models reproducing the statewide averaged sign and magnitude of recent observed trends of increasing warm days and warm nights and decreasing frost days. The warm spell duration index is however underestimated, while variance is generally overrepresented in the extreme temperature range across most regions. The simulations show a lower level of skill in modelling the amplitude of the extreme precipitation indices such as very wet days, but simulate the observed spatial patterns and variability. In general, simulations of dry extreme precipitation indices are underestimated in dryer areas and wet extremes indices are underestimated in wetter areas. Using two SRES emissions scenarios, the simulations indicate a significant increase in warm nights compared to a slightly more moderate increase in warm days, and an increase in maximum 1- and 5-day precipitation intensities interspersed with longer consecutive dry spells across Tasmania during the twenty-first century.

Keywords

Extremes Climate change Regional climate models Observations Projections Australian climate 

Notes

Acknowledgments

The authors would like to acknowledge JL McGregor (CAWCR, CSIRO) for providing the CCAM model and assisting in the running of the regional simulations, and WF Budd (University of Tasmania) for advice in the development of the scientific approach. Many thanks to JC Bennett (CSIRO) and MJ Pook (CAWCR, CSIRO) for comments and suggestions during the drafting of this manuscript, SE Perkins (University of New South Wales) for advice with the PDF skill scores and S Foster (CSIRO) for help with the trend calculations. Thanks also to LV Alexander (University of New South Wales), JM Arblaster (CAWCR, Bureau of Meteorology), and P Fox-Hughes and I Barnes-Keoghan (both Bureau of Meteorology) for their advice during the Climate Futures for Tasmania project, and to two anonymous reviewers for their highly constructive and insightful comments. This work was supported by the Australian Government’s Cooperative Research Centres Program through the Antarctic Climate and Ecosystems Cooperative Research Centre (ACE CRC). Climate Futures for Tasmania was possible with support through funding and research of a consortium of state and national partners. We acknowledge the following modelling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the CMIP3 multi-model dataset.

References

  1. Alexander LV, Arblaster JM (2009) Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int J Climatol 29:417–435. doi:10.1002/joc.1730 CrossRefGoogle Scholar
  2. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahim F, Tagipour A, Kumar Kolli R, Revadekar JV, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmos 111: D05109. doi: 10.1029/2005JD006290
  3. Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321:1481–1484. doi:10.1126/science.1160787 CrossRefGoogle Scholar
  4. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232. doi:10.1038/nature01092 CrossRefGoogle Scholar
  5. Bennett JC, Ling FLN, Graham B, Grose MR, Corney SP, White CJ et al (2010) Climate futures for Tasmania: water and catchments technical report. Antarctic Climate and Ecosystems Cooperative Research Centre, HobartGoogle Scholar
  6. Bennett JC, Ling FLN, Post DA, Grose MR, Corney SP et al (2012) High-resolution projections of surface water availability for Tasmania, Australia. Hydrol Earth Syst Sci 16:1287–1303CrossRefGoogle Scholar
  7. Berbery EH, Fox-Rabinovitz MS (2003) Multiscale diagnosis of the North American monsoon system using a variable-resolution GCM. J Clim 16:1929–1947CrossRefGoogle Scholar
  8. Berg P, Haerter JO, Thejll P, Piani C, Hagemann S, Christensen JH (2009) Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature. Geophys Res Lett 114:D18102. doi:10.1029/2009JD012008 CrossRefGoogle Scholar
  9. Boé J, Terray L (2007) A weather-type approach to analyzing winter precipitation in France: twentieth-century trends and the role of anthropogenic forcing. J Clim 21:3118–3133CrossRefGoogle Scholar
  10. Bureau of Meteorology (2012) Rainfall and temperature extremes. Bureau of Meteorology. http://www.bom.gov.au/climate/extreme/records.shtml. Accessed 24 July 2012
  11. Burton I, Dube OP, Campbell-Lendrum D, Davis I, Klein RJT, Linnerooth-Bayer J, Sanghi A, Toth F (2012) Managing the risks: international level and integration across scales. In: Field CB, Barros V et al (eds) Managing the risks of extreme events and disasters to advance climate change adaptation A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, pp 393–435Google Scholar
  12. Cai W, Shi G, Cowan T, Bi D, Ribbe J (2005) The response of the Southern annular mode, the East Australian current, and the southern mid-latitude ocean circulation to global warming. Geophys Res Lett 32:L23706. doi:10.1029/2005GL024701 CrossRefGoogle Scholar
  13. Chiew FHS, Kirono DGC, Kent DM, Frost AJ, Charles SP et al (2010) Comparison of runoff modelled using rainfall from different downscaling methods for historical and future climates. J Hydrol 387:10–23CrossRefGoogle Scholar
  14. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon SD, Qin M, Manning Z, Chen M, Marquis KB, Averyt M, Tignor, Miller HL (eds). Climate change: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  15. Collins DA, Della-Marta PM, Plummer N, Trewin BC (2000) Trends in annual frequencies of extreme temperature events in Australia. Aust Meteorol Mag 49:277–292Google Scholar
  16. Corney SP, Katzfey JF, McGregor JL, Grose MR, White CJ et al (2010) Climate futures for Tasmania: climate modelling technical report. Antarctic Climate and Ecosystems Cooperative Research Centre, HobartGoogle Scholar
  17. Dai A, Trenberth KE, Karl TR (1999) Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J Clim 12:2451–2473CrossRefGoogle Scholar
  18. Dole R, Hoerling M, Perlwitz J, Eischeid J, Pegion P, Zhang T, Quan X-W, Xu T, Murray D (2011) Was there a basis for anticipating the 2010 Russian heat wave? Geophys Res Lett 38:L06702. doi:10.1029/2010GL046582 CrossRefGoogle Scholar
  19. Dommenget D (2009) The ocean’s role in continental climate variability and change. J Clim 22:4939–4952CrossRefGoogle Scholar
  20. Donat MG, Alexander LV (2012) The shifting probability distribution of global daytime and night-time temperatures. Geophys Res Lett 39:L14707. doi:10.1029/2012GL052459 CrossRefGoogle Scholar
  21. Engelbrecht FA, McGregor JL, Engelbrecht CJ (2009) Dynamics of the conformal-cubic atmospheric model projected climate-change signal over southern Africa. Int J Climatol 29:1013–1033CrossRefGoogle Scholar
  22. Fox-Hughes P (2008) A fire danger climatology for Tasmania. Aust Met Mag 57:109–120Google Scholar
  23. Fox-Rabinovitz MS, Cote J, Deque M, Dugas B, McGregor JL (2006) Variable-resolution GCMs: stretched-grid model intercomparison project (SGMIP). J Geophys Res 111:D16104. doi:10.1029/2005JD006520 CrossRefGoogle Scholar
  24. Gallant A, Hennessy K, Risbey J (2007) Trends in precipitation indices for six Australian regions: 1910–2005. Aust Meteorol Mag 56:223–239Google Scholar
  25. Grose MR, Barnes-Keoghan I, Corney SP, White CJ, Holz GK et al (2010) Climate futures for Tasmania: general climate impacts. Antarctic Climate and Ecosystems Cooperative research Centre, HobartGoogle Scholar
  26. Grose MR, Corney SP, Bennett JC, White CJ, Holz GK et al (2012a) A regional response in mean westerly circulation and rainfall to projected climate warming over Tasmania, Australia. Clim Dyn online first. doi:10.1007/s00382-012-1405-1 Google Scholar
  27. Grose MR, Pook MJ, McIntosh PC, Risbey JS, Bindoff NL (2012b) The simulation of cutoff lows in a regional climate model: reliability and future trends. Clim Dyn online first. doi:10.1007/s00382-012-1368-2 Google Scholar
  28. Hansen J, Sato M, Ruedy R (2012) Perception of climate change. P Natl Acad Sci USA 109(37):E2415–E2423. doi:10.1073/pnas.1205276109 CrossRefGoogle Scholar
  29. Hegerl GC, Zwiers FW, Stott PA, Kharin VV (2004) Detectability of anthropogenic changes in annual temperature and precipitation extremes. J Clim 17:3683–3700CrossRefGoogle Scholar
  30. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) A special report of working groups I and II of the Intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, p 582Google Scholar
  31. Jones DA, Wang W, Fawcett R (2009) High-quality spatial climate data-sets for Australia. Aust Meteorol Oceanogr J 58:233–248Google Scholar
  32. Katzfey JJ, McInnes KL (1996) GCM simulations of eastern Australian cutoff lows. J Clim 9:2337–2355CrossRefGoogle Scholar
  33. Katzfey JJ, McGregor JL, Nguyen KC, Thatcher M (2009) Dynamical downscaling techniques: impacts on regional climate change signals. World IMACS/MODSIM Congress, Cairns, pp 2377–2383Google Scholar
  34. Kendall MG (1975) Rank correlation methods. Griffin, LondonGoogle Scholar
  35. Kendon EJ, Rowell DP, Jones RG (2010) Mechanisms and reliability of future projected changes in daily precipitation. Clim Dyn 35:489–509CrossRefGoogle Scholar
  36. Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–1444CrossRefGoogle Scholar
  37. Kiktev D, Caesar J, Alexander LV, Shiogama H, Collier M (2007) Comparison of observed and multimodeled trends in annual extremes of temperature and precipitation. Geophys Res Lett 34:L10702. doi:10.1029/2007GL029539 CrossRefGoogle Scholar
  38. King AD, Alexander LV, Donat MG (2012) The efficacy of using gridded data to examine extreme rainfall characteristics: a case study for Australia. Int J Climatol advanced online publication. doi:10.1002/joc.3588 Google Scholar
  39. Lal M, McGregor JL, Nguyen KC (2008) Very high-resolution climate simulation over Fiji using a global variable-resolution model. Clim Dyn 30:293–305CrossRefGoogle Scholar
  40. Mann HB (1945) Nonparametric trends against test. Econometrica 13:245–259CrossRefGoogle Scholar
  41. McGregor JL (2005) C-CAM: Geometric aspects and dynamical formulation. CSIRO Atmospheric Research Technical Paper 43Google Scholar
  42. McGregor JL, Dix MR (2008) An updated description of the conformal-cubic atmospheric model. In: Hamilton K, Ohfuchi W (eds) High resolution simulation of the atmosphere and ocean. Springer, Berlin, pp 51–76CrossRefGoogle Scholar
  43. McIntosh P, Pook M, Risbey J, Hope P, Wang G, Alves OA (2008) Final report—Australia’s regional climate drivers. Centre for Australian Weather and Climate Research, CSIROGoogle Scholar
  44. Meehl GA, Tebaldi C, Nychka D (2004) Changes in frost days in simulations of 21st century climate. Clim Dyn 23:495–511CrossRefGoogle Scholar
  45. Meehl GA, Covey AC, Delworth T, Latif M, McAvaney BJ, Mitchell JFB, Stouffer RJ, Taylor KE (2007a) The WCRP CMIP3 multi–model dataset: a new era in climate change research. Bull Am Meteor Soc 88:1383–1394CrossRefGoogle Scholar
  46. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007b) Global climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change: the physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  47. Mills G (2005) On the subsynoptic-scale meteorology of two extreme fire weather days during the Eastern Australian fires of January 2003. Aust Meteorol Mag 54:265–290Google Scholar
  48. Min S-K, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381. doi:10.1038/nature09763 CrossRefGoogle Scholar
  49. Murphy BF, Timbal B (2008) A review of recent climate variability and climate change in southeastern Australia. Int J Climatol 28:859–879. doi:10.1002/joc.1627 CrossRefGoogle Scholar
  50. Nakićenović N, Swart R (2000) Special report on emissions scenarios. A special report of working group III of the Intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  51. Nguyen KC, McGregor JL (2009) Modelling the Asian summer monsoon using CCAM. Clim Dyn 32:219–236CrossRefGoogle Scholar
  52. Nguyen KC, Katzfey JJ, McGregor JL (2011) Global 60 km simulations with CCAM: evaluation over the tropics. Clim Dyn online first. doi:10.1007/s00382-011-1197-8 Google Scholar
  53. Pall P, Allen MR, Stone DA (2007) Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Clim Dyn 28:351–363. doi:10.1007/s00382-006-0180-2 CrossRefGoogle Scholar
  54. Pall P, Aina T, Stone DA, Stott PA, Nozawa T, Hilberts AG, Lohmann D, Allen MR (2011) Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470:382–385CrossRefGoogle Scholar
  55. Perkins SE, Pitman AJ, Holbrook NJ, McAneney J (2007) Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature and precipitation over Australia using probability density functions. J Clim 20:4356–4376CrossRefGoogle Scholar
  56. Peterson TC, Stott PA, Herring S (2012) Explaining extreme events of 2011 from a climate perspective. Bull Am Meteor Soc 93:1041–1067. doi:10.1175/BAMS-D-12-00021.1 CrossRefGoogle Scholar
  57. Pook MJ, Risbey J, McIntosh P (2010) East coast lows, atmospheric blocking and rainfall: a Tasmanian perspective. IOP Conf Ser: Earth Environ Sci 11:012011CrossRefGoogle Scholar
  58. Randall DA, Wood R, Bony S, Colman R, Fichefet T et al (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  59. Raupach MR, Briggs PR, Haverd V, King EA, Paget M, Trudinger CM (2008) Australian water availability project (AWAP): final report for phase 3. CSIRO Marine and Atmospheric Research, Canberra, p 67Google Scholar
  60. Scaife AA, Folland CK, Alexander LV, Moberg A, Knight JR (2008) European climate extremes and the North Atlantic Oscillation. J Clim 21:72–83CrossRefGoogle Scholar
  61. Schiermeier Q (2011) Extreme measures. Nature 477:148–149. doi:10.1038/477148a CrossRefGoogle Scholar
  62. Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin S, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V et al (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, pp 109–230Google Scholar
  63. Sillmann J, Roekner E (2008) Indices for extreme events in projections of anthropogenic climate change. Clim Change 86:83–104CrossRefGoogle Scholar
  64. Smith I, Chandler E (2009) Refining rainfall projections for the Murray Darling Basin of south-east Australia—the effect of sampling model results based on performance. Clim Change 102:377–393CrossRefGoogle Scholar
  65. Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D (2007) Technical summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007 the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  66. Suppiah R, Hennessy KJ, Whetton PH, McInnes KL, Macadam I, Bathols J, Ricketts J (2007) Australian climate change scenarios derived from simulations performed for the IPCC 4th assessment report. Aust Meteorol Mag 56:131–152Google Scholar
  67. Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79:185–211CrossRefGoogle Scholar
  68. Thatcher M, McGregor JL (2009) Using a scale-selective filter for dynamical downscaling with the conformal cubic atmospheric model. Mon Weather Rev 137:1742–1752CrossRefGoogle Scholar
  69. Thatcher M, McGregor JL (2011) A technique for dynamically downscaling daily-averaged GCM datasets using the conformal cubic atmospheric model. Mon Weather Rev 139:79–95CrossRefGoogle Scholar
  70. van Oldenborgh GJ, Philip SY, Collins M (2005) El Niño in a changing climate: a multi-model study. Ocean Sci 1:81–95. doi:10.5194/os-1-81-2005 CrossRefGoogle Scholar
  71. Watterson IG, McGregor JL, Nguyen KC (2008) Changes in extreme temperatures of Australasian summer simulated by CCAM under global warming, and the roles of winds and land-sea contrasts. Aust Meteorol Mag 57:195–212Google Scholar
  72. White CJ, Sanabria LA, Corney SP, Grose MR, Holz GK et al (2010a) Modelling extreme events in a changing climate using regional dynamically-downscaled climate projections. IEMSs 2010 International Congress on Environmental Modelling and Software, OttawaGoogle Scholar
  73. White CJ, Grose MR, Corney SP, Bennett JC, Holz GK et al (2010b) Climate futures for Tasmania: extreme events technical report. Antarctic Climate and Ecosystems Cooperative Research Centre, HobartGoogle Scholar
  74. Zhang X, Alexander L, Hegerl GC, Jones P, Klein Tank A, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim Change 2:851–870. doi:10.1002/wcc.147 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christopher J. White
    • 1
  • Kathleen L. McInnes
    • 2
  • Robert P. Cechet
    • 3
  • Stuart P. Corney
    • 1
  • Michael R. Grose
    • 1
  • Gregory K. Holz
    • 1
  • Jack J. Katzfey
    • 2
  • Nathaniel L. Bindoff
    • 1
    • 4
    • 5
  1. 1.Antarctic Climate and Ecosystems Cooperative Research Centre (ACE CRC)University of TasmaniaHobartAustralia
  2. 2.Centre for Australian Weather and Climate Research (CAWCR)CSIRO Marine and Atmospheric ResearchAspendaleAustralia
  3. 3.Geoscience AustraliaCanberraAustralia
  4. 4.Institute of Marine and Antarctic Studies (IMAS)University of TasmaniaHobartAustralia
  5. 5.Centre for Australian Weather and Climate Research (CAWCR)CSIRO Marine and Atmospheric ResearchHobartAustralia

Personalised recommendations