Climate Dynamics

, Volume 41, Issue 5–6, pp 1345–1364 | Cite as

AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations

  • Argyro KavvadaEmail author
  • Alfredo Ruiz-Barradas
  • Sumant Nigam


This study aims to characterize the spatiotemporal features of the low frequency Atlantic Multidecadal Oscillation (AMO), its oceanic and atmospheric footprint and its associated hydroclimate impact. To accomplish this, we compare and evaluate the representation of AMO-related features both in observations and in historical simulations of the twentieth century climate from models participating in the IPCC’s CMIP5 project. Climate models from international leading research institutions are chosen: CCSM4, GFDL-CM3, UKMO-HadCM3 and ECHAM6/MPI-ESM-LR. Each model employed includes at least three and as many as nine ensemble members. Our analysis suggests that the four models underestimate the characteristic period of the AMO, as well as its temporal variability; this is associated with an underestimation/overestimation of spectral peaks in the 70–80 year/10–20 year range. The four models manifest the mid-latitude focus of the AMO-related SST anomalies, as well as certain features of its subsurface heat content signal. However, they are limited when it comes to simulating some of the key oceanic and atmospheric footprints of the phenomenon, such as its signature on subsurface salinity, oceanic heat content and geopotential height anomalies. Thus, it is not surprising that the models are unable to capture the majority of the associated hydroclimate impact on the neighboring continents, including underestimation of the surface warming that is linked to the positive phase of the AMO and is critical for the models to be trusted on projections of future climate and decadal predictions.


AMO CMIP5 Climate models Historical simulations Timescale of variability Hydroclimate impact Salinity Ocean heat content 



The authors wish to acknowledge support from the NOAA grant NA10OAR4310158. They also wish to thank Dr. Edwin K. Schneider, Executive Editor at Climate Dynamics and two anonymous reviewers for their constructive comments and insightful references that helped improve the paper, as well as Jose Caceres, Assistant System Administrator at University of Maryland, for providing help with respect to data access from the Earth System Grid (ESG) website. Finally, they wish to acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and wish to thank the climate modeling groups used in this paper for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.


  1. Bjerknes J (1964) Atlantic air–sea interaction. Advances in geo-physics, vol 10. Academic Press, London, pp 1–82Google Scholar
  2. Booth B et al (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484:228–232. doi: 10.1038/nature10946 CrossRefGoogle Scholar
  3. Boyer TP, Levitus S, Antonov J, Locarnini R, Garcia H (2005) Linear trends in salinity for the World Ocean, 1955–1998. Geophys Res Lett 32:L01604. doi: 10.1029/2004GL021791 CrossRefGoogle Scholar
  4. Carton J, Giese B, Grodsky S (2005) Sea level rise and the warming of the oceans in the SODA ocean reanalysis. J Geophys Res 110:C09006. doi: 10.1029/2004JC002817
  5. Chu PC (2011) Global upper ocean heat content and climate variability. Ocean Dyn 61(8):1189–1204CrossRefGoogle Scholar
  6. Deser C, Blackmon ML (1993) Surface climate variations over the North Atlantic Ocean during winter: 1900–89. J Clim 6:1743–1753. doi: 10.1175/1520-0442(1993)006<1743:SCVOTN>2.0.CO;2 Google Scholar
  7. Deser C, Holland M, Reverdin G, Timlin M (2002) Decadal variations in Labrador Sea ice cover and North Atlantic sea surface temperatures. J Geophys Res 107(C5). doi: 10.1029/2000JC000683
  8. Enfield C, Cid-Serrano L (2006) Projecting the risk of future climate shifts. Int. J. Climatol 26:885–895. doi: 10.1002/joc.1293 Google Scholar
  9. Enfield DB, Mayer DA (1997) Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J Geophys Res 102(C1):929–945. doi: 10.1029/96JC03296 Google Scholar
  10. Enfield D, Mestas-Nunez E, Trimble P (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080CrossRefGoogle Scholar
  11. Evan AT et al (2009) The role of aerosols in the evolution of Tropical North Atlantic Ocean temperature anomalies. Science 324(5928):778–781. doi: 10.1126/science.1167404 CrossRefGoogle Scholar
  12. Fan M, Schneider EK (2012) Observed decadal North Atlantic tripole SST variability. Part I: weather noise forcing and coupled response. J Atmos Sci 69:35–50. doi: 10.1175/JAS-D-11-018.1 CrossRefGoogle Scholar
  13. Frankcombe LM (2010) The Atlantic multidecadal oscillation in models and observations, Natuur- en Sterrenkunde Proefschriften.
  14. Gelderloos R, Straneo F, Katsman CA (2012) Mechanisms behind the Temporary shutdown of deep convection in the Labrador Sea: lessons from the great salinity anomaly years 1968–71. J Clim 25:6743–6755. doi: 10.1175/JCLI-D-11-00549.1 CrossRefGoogle Scholar
  15. Guan B, Nigam S (2009) Analysis of Atlantic SST variability factoring interbasin links and the secular trend: clarified structure of the Atlantic multidecadal oscillation. J Clim 22:4228–4239. doi: 10.1175/2009JCLI2921.1 CrossRefGoogle Scholar
  16. Hansen JE et al (2005) Earth’s energy imbalance: confirmation and implications. Science 308:1431–1435. doi: 10.1126/science.1110252 CrossRefGoogle Scholar
  17. Hodson D, Sutton R, Cassou C, Keenlyside N, Okumura Y, Zhou T (2010) Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature: a multimodel comparison. Clim Dyn 34:1041–1058. doi: 10.1007/s00382-009-0571-2 CrossRefGoogle Scholar
  18. Huang B et al (2011) Influences of tropical–extratropical interaction on the multidecadal AMOC variability in the NCEP climate forecast system. Clim Dyn. 39(3–4):531–555. doi: 10.1007/s00382-011-1258-z Google Scholar
  19. Hurrell JW et al (2009) Decadal climate prediction: opportunities and challenges. Community White Paper, OceanObs’09
  20. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470CrossRefGoogle Scholar
  21. Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckne E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88CrossRefGoogle Scholar
  22. Kelly KA, Dong S (2004) The relationship of western boundary current heat transport and storage to mid-latitude ocean–atmosphere interaction. In: Wang C, Xie S-P, Carton JA (eds) Earth’s climate: the ocean–atmosphere interaction. pp 347–363, American Geophysical Union Geophysical Monograph 147Google Scholar
  23. Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288(5473):1984–1986. doi: 10.1126/science.288.5473.1984 CrossRefGoogle Scholar
  24. Knight J, Folland C, Scaife A (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett 33:L17706. doi: 10.1029/2006GL026242 CrossRefGoogle Scholar
  25. Kushnir Y (1994) Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J Clim 7:141–157CrossRefGoogle Scholar
  26. Kushnir Y, Seager R, Ting M, Naik N, Nakamura J (2010) Mechanisms of tropical Atlantic SST influence on North American precipitation variability. J Clim 23:5610–5628CrossRefGoogle Scholar
  27. Latif M (2001) Tropical Pacific/Atlantic Ocean interactions at multi-decadal time scales. Geophys Res Lett 28:539–542CrossRefGoogle Scholar
  28. Latif M et al (2004) Reconstructing, monitoring, and predicting decadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J Clim 17:1605–1614CrossRefGoogle Scholar
  29. Levitus S, Antonov J, Boyer TP, Stephens C (2000) Warming of the world ocean. Science 287:2225–2229CrossRefGoogle Scholar
  30. Levitus S, Antonov JL, Wang J, Delworth TL, Dixon KW, Broccoli AJ (2001) Anthropogenic warming of Earth’s climate system. Science 292:267–270CrossRefGoogle Scholar
  31. Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32:L02604. doi: 10.1029/2004GL021592 CrossRefGoogle Scholar
  32. Lozier MS, Leadbetter S, Williams RG, Roussenov V, Reed MSC, Moore NJ (2008) The spatial pattern and mechanisms of heat-content change in the North Atlantic. Science 319:800–803. doi: 10.1126/science.1146436 CrossRefGoogle Scholar
  33. Mann ME, Emanuel KA (2006) Atlantic hurricane trends linked to climate change. Eos 87(24):233–244CrossRefGoogle Scholar
  34. Medhaug I, Furevik T (2011) North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation. Ocean Sci Discuss 8:353–396. doi: 10.5194/osd-8-353-2011 CrossRefGoogle Scholar
  35. Meehl G, Tebaldi C, Walton G., Easterling D, McDaniel L (2009) Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophy Res Lett 36:L23701. doi: 10.1029/2009GL040736
  36. Meinshausen M et al (2011) The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Clim Change 109:213–241. doi: 10.1007/s10584-011-0156-z CrossRefGoogle Scholar
  37. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi: 10.1002/joc.1181 Google Scholar
  38. Nigam S, Guan B, Ruiz-Barradas A (2011) Key role of the Atlantic multidecadal oscillation in 20th century drought and wet periods over the Great Plains. Geophys Res Lett 38:L16713. doi: 10.1029/2011GL048650 CrossRefGoogle Scholar
  39. Polyakov IV, Bhatt US, Simmons HL, Walsh D, Walsh JE, Zhang X (2005a) Multidecadal variability of North Atlantic temperature and salinity during the twentieth century. J Clim 18:4562–4581CrossRefGoogle Scholar
  40. Polyakov IV et al (2005b) One more step toward a warmer Arctic. Geophys Res Lett 32:L17605. doi: 10.1029/2005GL023740 CrossRefGoogle Scholar
  41. Quenouille MH (1952) Associated measurements. Academic, New YorkGoogle Scholar
  42. Rayner NA et al (2005) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J Clim 19:446–468CrossRefGoogle Scholar
  43. Reverdin G, Cayan D, Kushnir Y (1997) Decadal variability of hydrography in the upper northern North Atlantic in 1948–1990. J Geophys Res 102(C4). doi: 10.1029/96JC03943
  44. Ruiz-Barradas A, Nigam S (2005) Warm-season rainfall variability over the US Great Plains in observations, NCEP and ERA-40 reanalyses, and NCAR and NASA atmospheric model simulations. J Clim 18:1808–1830CrossRefGoogle Scholar
  45. Ruiz-Barradas A, Carton JA, Nigam S (2000) Structure of interannual-to-decadal climate variability in the tropical Atlantic sector. J Clim 13:3285–3297. doi: 10.1175/1520-0442 CrossRefGoogle Scholar
  46. Ruiz-Barradas A, Nigam S, Kavvada A (2012) The Atlantic multidecadal oscillation in 20th century climate simulations: uneven progress from CMIP3 to CMIP5. Clim Dyn. Major RevisionsGoogle Scholar
  47. Schneider EK, Fan M (2007) Weather noise forcing of surface climate variability. J Atmos Sci 64:3265–3280. doi: 10.1175/JAS4026.1 CrossRefGoogle Scholar
  48. Schneider EK, Fan M (2012) Observed decadal North Atlantic tripole SST variability. Part II: diagnosis of mechanisms. J Atmos Sci 69:51–64. doi: 10.1175/JAS-D-11-019.1 CrossRefGoogle Scholar
  49. Slonosky VC, Mysak LA, Derome J (1997) Linking Arctic sea-ice and atmospheric circulation anomalies on interannual and decadal timescales. Atmos Ocean 35:333–366. doi: 10.1080/07055900.1997.9649596 CrossRefGoogle Scholar
  50. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296. doi: 10.1175/2007JCLI2100.1 Google Scholar
  51. Sundby S, Drinkwater K (2002) On the mechanisms behind salinity anomaly signals of the northern North Atlantic. Prog Oceanogr 73(2):190–202CrossRefGoogle Scholar
  52. Sutton R, Hodson D (2003) Influence of the Ocean on North Atlantic climate variability 1871–1999. J Clim 16:3296–3313. doi: 10.1175/1520-0442(2003)016<3296:IOTOON>2.0.CO;2 Google Scholar
  53. Sutton R, Hodson D (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–117. doi: 10.1126/science.1109496 CrossRefGoogle Scholar
  54. Taylor K, Stouffer R, Meehl G (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 Google Scholar
  55. Ting M, Kushnir Y, Seager R, Li C (2009) Forced and internal twentieth-century SST trends in the North Atlantic. J Clim 22:1469–1481. doi: 10.1175/2008JCLI2561.1 CrossRefGoogle Scholar
  56. Ting M, Kushnir Y, Seager R, Li C (2011) Robust features of the Atlantic multi-decadal variability and its climate impacts. Geophys Res Lett 38:L17705. doi: 10.1029/2011GL048712 CrossRefGoogle Scholar
  57. Wang H, Fu R, Kumar A, Li WH (2010) Intensification of summer rainfall variability in the southeastern United States during recent decades. J Hydrometeorol 11:1007–1018CrossRefGoogle Scholar
  58. Webster PJ, Holland GJ, Curry JA, Chang H-R (2005) Changes in tropical cyclone number, duration and intensity in a warming environment. Science 309:1844–1846CrossRefGoogle Scholar
  59. Zhang R (2007) Anticorrelated multidecadal variations between surface and subsurface tropical North Atlantic. Geophys Res Lett 34:L12713. doi: 10.1029/2007GL030225 CrossRefGoogle Scholar
  60. Zhang R, Delworth T (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi: 10.1029/2006GL026267 CrossRefGoogle Scholar
  61. Zhang R, Vallis GK (2006) Impact of great salinity anomalies on the low-frequency variability of the North Atlantic climate. J Clim 19:470–482CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Argyro Kavvada
    • 1
    Email author
  • Alfredo Ruiz-Barradas
    • 1
  • Sumant Nigam
    • 1
    • 2
  1. 1.Department of Atmospheric and Oceanic ScienceUniversity of MarylandCollege ParkUSA
  2. 2.Earth System Science Interdisciplinary CenterUniversity of MarylandCollege ParkUSA

Personalised recommendations