Climate Dynamics

, Volume 42, Issue 3–4, pp 991–1005 | Cite as

Different impacts of various El Niño events on the Indian Ocean Dipole

Article

Abstract

Our early work (Wang and Wang in J Clim 26:1322–1338, 2013) separates El Niño Modoki events into El Niño Modoki I and II because they show different impacts on rainfall in southern China and typhoon landfall activity. The warm SST anomalies originate in the equatorial central Pacific and subtropical northeastern Pacific for El Niño Modoki I and II, respectively. El Niño Modoki I features a symmetric SST anomaly distribution about the equator with the maximum warming in the equatorial central Pacific, whereas El Niño Modoki II shows an asymmetric distribution with the warm SST anomalies extending from the northeastern Pacific to the equatorial central Pacific. The present paper investigates the influence of the various groups of El Niño events on the Indian Ocean Dipole (IOD). Similar to canonical El Niño, El Niño Modoki I is associated with a weakening of the Walker circulation in the Indo-Pacific region which decreases precipitation in the eastern tropical Indian Ocean and maritime continent and thus results in the surface easterly wind anomalies off Java-Sumatra. Under the Bjerknes feedback, the easterly wind anomalies induce cold SST anomalies off Java- Sumatra, and thus a positive IOD tends to occur in the Indian Ocean during canonical El Niño and El Niño Modoki I. However, El Niño Modoki II has an opposite impact on the Walker circulation, resulting in more precipitation and surface westerly wind anomalies off Java-Sumatra. Thus, El Niño Modoki II is favorable for the onset and development of a negative IOD on the frame of the Bjerknes feedback.

Notes

Acknowledgments

We thank two anonymous reviewers for their comments and suggestions on the manuscript. This work was supported by the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office, the base funding of NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML), the National Basic Research Program of China (2013CB430301), and the Chinese Academy of Sciences. The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the funding agency.

References

  1. Annamalai H, Murtugudde R, Potemra J, Xie SP, Liu P, Wang B (2003) Coupled dynamics over the Indian Ocean: spring initiation of the zonal mode. Deep Sea Res II 50:2305–2330CrossRefGoogle Scholar
  2. Annamalai H, Xie SP, McCreary JP, Murtugudde R (2005) Impact of Indian Ocean sea surface temperature on developing El Nino. J Clim 18:302–319CrossRefGoogle Scholar
  3. Ashok K, Guan Z, Yamagata T (2003) Influence of the Indian Ocean dipole on the Australian winter rainfall. Geophys Res Lett 30:1821. doi:10.1029/2003GL017926 CrossRefGoogle Scholar
  4. Ashok K, Guan Z, Saji NH, Yamagata T (2004) Individual and combined influences of ENSO and Indian Ocean dipole on the Indian summer monsson. J Clim 17:3134–3155CrossRefGoogle Scholar
  5. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798 CrossRefGoogle Scholar
  6. Ashok K, Iizuka S, Rao SA, Saji NH, Lee WJ (2009) Processes and boreal summer impacts of the 2004 El Niño Modoki: an AGCM study. Geophys Res Lett 36:L04703. doi:10.1029/2008GL036313 Google Scholar
  7. Baquero-Bernal A, Latif M, Legutke M (2002) On dipole like variability of sea surface temperature in the tropical Indian Ocean. J Clim 15:1358–1368CrossRefGoogle Scholar
  8. Behera SK, Yamagata T (2003) Influence of the Indian Ocean dipole on the Southern Oscillation. J Meteorol Soc Jpn 81:169–177CrossRefGoogle Scholar
  9. Behera SK, Luo JJ, Masson S, Rao SA, Sakumo H, Yamagata T (2006) A CGCM study on the interaction between IOD and ENSO. J Clim 19:1608–1705CrossRefGoogle Scholar
  10. Cai W, Cowan T, Sullivan A (2009) Recent unprecedented skewness towards positive Indian Ocean dipole occurrences and its impact on Australian rainfall. Geophys Res Lett 36:L11705. doi:10.1029/2009GL037604 CrossRefGoogle Scholar
  11. Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Weather Rev 136:2999–3017CrossRefGoogle Scholar
  12. Cobb KM, Charles CD, Cheng H, Edwards RL (2003) El Niño/Southern oscillation and tropical Pacific climate during the last millennium. Nature 424:271–276CrossRefGoogle Scholar
  13. Compo GP et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28CrossRefGoogle Scholar
  14. Feng J, Chen W, Tam CY, Zhou W (2011) Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int J Climatol 31:2091–2101CrossRefGoogle Scholar
  15. Fischer AP, Terray P, Guilyardi E, Gualdi S, Delecluse P (2005) Two independent triggers for the Indian Ocean dipole zonal mode in a coupled GCM. J Clim 18:3428–3449CrossRefGoogle Scholar
  16. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462CrossRefGoogle Scholar
  17. Gualdi S, Guilyardi E, Navarra A, Masina S, Delecluse P (2003) The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Clim Dyn 20:567–582Google Scholar
  18. Hastenrath S (2002) Dipoles, temperature gradients, and tropical climate anomalies. Bull Am Meteorol Soc 83:735–740CrossRefGoogle Scholar
  19. Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of El Niño. J Clim 22:615–632CrossRefGoogle Scholar
  20. Kim JS, Zhou W, Wang X, Jain S (2012) El Niño Modoki and the summer precipitation variability over South Korea: a diagnostic study. J Meteorol Soc Jpn 90:673–684CrossRefGoogle Scholar
  21. Krishnamurthy V, Kirtman BP (2003) Variability of the Indian Ocean: relation to monsoon and ENSO. Q J R Meteorol Soc 129:1623–1646CrossRefGoogle Scholar
  22. Kug JS, Kang IS (2006) Interactive feedback between ENSO and the Indian Ocean. J Clim 19:1784–1801CrossRefGoogle Scholar
  23. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515CrossRefGoogle Scholar
  24. Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705. doi:10.1029/2005GL022860 CrossRefGoogle Scholar
  25. Lau NC, Nath MJ (2004) Coupled GCM simulation of atmosphere ocean variability associated with the zonally asymmetric SST changes in the tropical Indian Ocean. J Clim 20:4497–4525Google Scholar
  26. Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603. doi:10.1029/2010GL044007 Google Scholar
  27. Li G, Ren B (2012) Evidence for strengthening of the tropical Pacific Ocean surface wind speed during 1979–2001. Theor Appl Climatol 107:59–72CrossRefGoogle Scholar
  28. Li CY, Zhou W, Jia XL, Wang X (2006) Decadal/Interdecadal variations of ocean temperature and its impacts on climate. Adv Atmos Sci 23:964–981CrossRefGoogle Scholar
  29. Liu L, Yu W, Li T (2011) Dynamic and thermodynamic air-sea coupling associated with the Indian Ocean Dipole diagnosed from 23 WCRP CMIP3 models. J Clim 24:4941–4958. doi:10.1175/2011JCLI4041.1 CrossRefGoogle Scholar
  30. Luo JJ, Behera S, Masumoto Y, Sakuma H, Yamagata T (2008) Successful prediction of the consecutive IOD in 2006 and 2007. Geophys Res Lett 35:L14S02. doi:10.1029/2007GL032793 CrossRefGoogle Scholar
  31. Luo JJ, Zhang R, Behera S, Masumoto Y, Jin FF, Lukas R, Yamagata T (2010) Interaction between El Niño and extreme Indian Ocean dipole. J Clim 23:726–742CrossRefGoogle Scholar
  32. Luo JJ, Sasaki W, Masumoto Y (2012) Indian Ocean warming modulates Pacific climate change. PNAS 109:18701–18706CrossRefGoogle Scholar
  33. Merrifield MA (2011) A shift in western tropical Pacific sea-level trends during the 1990s. J Clim 24:4126–4138CrossRefGoogle Scholar
  34. Meyers G, McIntosh P, Pigot L, Pook M (2007) The years of El Niño, La Niña and interactions with the tropical Indian Ocean. J Clim 20:2872–2880CrossRefGoogle Scholar
  35. Nagura M, Konda M (2007) The seasonal development of an SST anomaly in the Indian Ocean and its relationship to ENSO. J Clim 20:38–52CrossRefGoogle Scholar
  36. Power SB, Kociuba G (2011) What caused the observed twentieth-century weakening of the Walker circulation? J Clim 24:6501–6514CrossRefGoogle Scholar
  37. Rayner NA et al (2003) Global analysis of sea surface temperature, sea ice and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670 CrossRefGoogle Scholar
  38. Ren HL, Jin FF (2011) Niño indices for two types of ENSO. Geophys Res Lett 38:L04704. doi:10.1029/2010GL046031 CrossRefGoogle Scholar
  39. Saji NH, Yamagata T (2003) Possible impacts of Indian Ocean Dipole mode events on global climate. Clim Res 25:151–169CrossRefGoogle Scholar
  40. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  41. Schott FA, Xie SP, McCreary J (2009) Indian Ocean circulation and climate variability. Rev Geophys 47:RG1002. doi:10.1029/2007RG000245 CrossRefGoogle Scholar
  42. Song Q, Vecchi GA, Rosati AJ (2007) Indian Ocean variability in the GFDL CM2 coupled climate model. J Clim 20:2895–2916CrossRefGoogle Scholar
  43. Song Q, Vecchi GA, Rosati AJ (2008) Predictability of the Indian Ocean sea surface temperature anomalies in the GFDL coupled model. Geophys Res Lett 35:L02701. doi:10.1029/2007GL031966 CrossRefGoogle Scholar
  44. Tokinaga H, Xie SP, Deser C, Kosaka Y, Okumura YM (2012) Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 491:439–443CrossRefGoogle Scholar
  45. Ueda H, Matsumoto J (2001) A possible triggering process of east-west asymmetric anomalies over the Indian Ocean in relation to 1997/98 El Niño. J Meteorol Soc Jpn 7:8803–8818Google Scholar
  46. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4330CrossRefGoogle Scholar
  47. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76CrossRefGoogle Scholar
  48. Vinayachandran PN, Saji NH, Yamagata T (1999) Response of the equatorial Indian Ocean to an anomalous wind event during 1994. Geophys Res Lett 26:1613–1615CrossRefGoogle Scholar
  49. Wang C, Wang X (2013) Classifying El Niño Modoki I and II by different impacts on rainfall in Southern China and typhoon tracks. J Clim 26:1322–1338Google Scholar
  50. Wang X, Li C, Zhou W (2006) Interdecadal variation of the relationship between Indian rainfall and SSTA modes in the Indian Ocean. Int J Climatol 26:595–606CrossRefGoogle Scholar
  51. Wang X, Wang D, Zhou W (2009) Decadal variability of twentieth century El Niño and La Niña occurrence from observations and IPCC AR4 coupled models. Geophys Res Lett 36:L11701. doi:10.1029/2009GL037929 CrossRefGoogle Scholar
  52. Wang C, Deser C, Yu J-Y, DiNezio P, Clement A (2013) El Niño-Southern Oscillation (ENSO): a review. In: Glymn P, Manzello D, Enochs I (eds) Coral reefs of the Eastern Pacific. Springer Science Publisher, BerlinGoogle Scholar
  53. Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401:356–360. doi:10.1038/43848 CrossRefGoogle Scholar
  54. Weng H, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:113–129CrossRefGoogle Scholar
  55. Wu R, Kirtman BP (2004) Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J Clim 17:4019–4031CrossRefGoogle Scholar
  56. Xiang B, Yu W, Li T, Wang B (2011) The critical role of the boreal summer mean state in the development of the IOD. Geophys Res Lett 38:L02710. doi:10.1029/2010GL045851 CrossRefGoogle Scholar
  57. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558CrossRefGoogle Scholar
  58. Xie SP, Annamalai H, Schott F, McCreary JP Jr (2002) Origin and predictability of South Indian Ocean climate variability. J Clim 15:864–874CrossRefGoogle Scholar
  59. Yamagata T, Saji NH, Behera SK (2003) Comments on Indian Ocean dipole. Bull Am Meteorol Soc 84:1440–1442CrossRefGoogle Scholar
  60. Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–515CrossRefGoogle Scholar
  61. Yu JY, Kao HY (2007) Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J Geophys Res 112:D13106. doi:10.1029/2006JD007654 CrossRefGoogle Scholar
  62. Yu JY, Kim ST (2010) Three evolution patterns of Central-Pacific El Niño. Geophys Res Lett 37:L08706. doi:10.1029/2010GL042810 Google Scholar
  63. Yu JY, Mechoso CR, McWilliams JC, Arakawa A (2002) Impacts of the Indian Ocean on the ENSO cycle. Geophys Res Lett 29:1204. doi:10.1029/2001GL014098 CrossRefGoogle Scholar
  64. Yu W, Xiang B, Liu L, Liu N (2005) Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys Res Lett 32:L24706. doi:10.1029/2005GL024327 CrossRefGoogle Scholar
  65. Yuan Y, Yang S (2012) Impacts of different types of El Niño on the East Asian climate: focus on ENSO cycles. J Clim 25:7702–7722CrossRefGoogle Scholar
  66. Yuan Y, Yang H, Zhou W, Li C (2008) Influences of the Indian Ocean dipole on the Asian summer monsoon in the following year. Int J Climatol 28:1849–1859CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2013

Authors and Affiliations

  1. 1.Cooperative Institute for Marine and Atmospheric StudiesUniversity of MiamiMiamiUSA
  2. 2.NOAA/Atlantic Oceanographic and Meteorological LaboratoryMiamiUSA
  3. 3.State Key Laboratory of Tropical OceanographySouth China Sea Institute of Oceanology Chinese Academy of SciencesGuangzhouChina

Personalised recommendations