Climate Dynamics

, Volume 41, Issue 7–8, pp 1685–1701 | Cite as

Winter-to-spring temperature dynamics in Turkey derived from tree rings since AD 1125

  • Ingo HeinrichEmail author
  • Ramzi Touchan
  • Isabel Dorado Liñán
  • Heinz Vos
  • Gerhard Helle


In the eastern Mediterranean in general and in Turkey in particular, temperature reconstructions based on tree rings have not been achieved so far. Furthermore, centennial-long chronologies of stable isotopes are generally also missing. Recent studies have identified the tree species Juniperus excelsa as one of the most promising tree species in Turkey for developing long climate sensitive stable carbon isotope chronologies because this species is long-living and thus has the ability to capture low-frequency climate signals. We were able to develop a statistically robust, precisely dated and annually resolved chronology back to AD 1125. We proved that variability of δ13C in tree rings of J. excelsa is mainly dependent on winter-to-spring temperatures (January–May). Low-frequency trends, which were associated with the medieval warm period and the little ice age, were identified in the winter-to-spring temperature reconstruction, however, the twentieth century warming trend found elsewhere could not be identified in our proxy record, nor was it found in the corresponding meteorological data used for our study. Comparisons with other northern-hemispherical proxy data showed that similar low-frequency signals are present until the beginning of the twentieth century when the other proxies derived from further north indicate a significant warming while the winter-to-spring temperature proxy from SW-Turkey does not. Correlation analyses including our temperature reconstruction and seven well-known climate indices suggest that various atmospheric oscillation patterns are capable of influencing the temperature variations in SW-Turkey.


Tree rings Juniperus excelsa Temperature reconstruction Stable carbon isotopes δ13Climate indices 



We thank Carmen Bürger and Christoph Küppers for their help in the laboratory. This research was funded by the EU project MILLENNIUM (#017008).


  1. Akkemik Ü (2000) Dendroclimatology of umbrella pine (Pinus pinea L.) in Istanbul (Turkey). Tree-Ring Bull 56:17–20Google Scholar
  2. Akkemik Ü (2003) Tree rings of Cedrus libani at the northern boundary of its natural distribution. IAWA J 24:63–73CrossRefGoogle Scholar
  3. Akkemik Ü, Aras A (2005) Reconstruction (1689–1994) of April-August precipitation in southwestern part of central Turkey. Int J Climatol 25:537–548CrossRefGoogle Scholar
  4. Akkemik Ü, Dagdeviren N, Aras A (2005) A preliminary reconstruction (A.D. 1635–2000) of spring precipitation using oak tree rings in the western Black Sea region of Turkey. Int J Biometeorol 49:297–302. doi: 10.1007/s00484-004-0249-8 CrossRefGoogle Scholar
  5. Akkemik Ü, D’Arrigo R, Cherubini P, Köse N, Jacoby GC (2008) Tree-ring reconstructions of precipitation and streamflow for north-western Turkey. Int J Climatol 28:173–183CrossRefGoogle Scholar
  6. Allan R, Lindesay J, Parker D (1996) El Niño southern oscillation and climatic variability. CSIRO Publishing, CollingwoodGoogle Scholar
  7. Alpert P, Baldi M, Ilani R, Krichak S, Price C, Rodó X, Saaroni H, Ziv B, Kishcha P, Barkan J, Mariotti A, Xoplaki E (2006) Relations between climate variability in the Mediterranean region and the tropics: ENSO, South Asian and African monsoons, hurricanes and Saharan dust. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Mediterranean climate variability. Elsevier, Amsterdam, pp 149–177Google Scholar
  8. Bahrenberg G, Giese E, Nipper J (1990) Statistische Methoden in der Geographie. Bd. 1 Univariate und bivariate Statistik. Teubner, StuttgartGoogle Scholar
  9. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126CrossRefGoogle Scholar
  10. Beerling DJ (1996) 13C discrimination by fossil leaves during the late-glacial climate oscillation 12–10 ka BP: measurements and physiological controls. Oecologia 108:29–37CrossRefGoogle Scholar
  11. Ben-Gai T, Bitan A, Manes A, Alpert P, Rubin S (1999) Temporal and spatial trends of temperature patterns in Israel. Theor Appl Climatol 64:163–177CrossRefGoogle Scholar
  12. Ben-Gai T, Bitan A, Manes A, Alpert P, Kushnir Y (2001) Temperature and surface pressure anomalies in Israel and the North Atlantic Oscillation. Theor Appl Climatol 69:171–177CrossRefGoogle Scholar
  13. Bottema S, Woldring H (1990) Anthropogenic indicators in the pollen record of the Eastern Mediterranean. In: Bottema S, Entjes-Nieborg G, van Zeist W (eds) Man’s role in the shaping of the eastern Mediterranean landscape. Balkema, Rotterdam, pp 231–264Google Scholar
  14. Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe—the state of the art. Clim Change 70:363–430CrossRefGoogle Scholar
  15. Chou Y (1972) Probability and statistics for decision making. Holt, Rinehart, Winston, NYGoogle Scholar
  16. Conte M, Giuffrida S, Tedesco S (1989) The Mediterranean oscillation: impact on precipitation and hydrology in Italy. In: Proceedings of the conference on climate and water, vol 1. Publications of Academy of Finland, Helsinki, pp 121–137Google Scholar
  17. Cook ER, Kairiukstis LA (1990) Methods of dendrochronology. Kluver, DordrechtCrossRefGoogle Scholar
  18. Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology: a review and comparison of two techniques. Int J Climatol 14:379–402CrossRefGoogle Scholar
  19. Corte-Real J, Zhang X, Wang X (1995) Large-scale circulation regimes and surface climatic anomalies over the Mediterranean. Int J Climatol 15:1135–1150CrossRefGoogle Scholar
  20. D’Arrigo R, Cullen HM (2001) A 350-year (AD 1628–1980) reconstruction of Turkish precipitation. Dendrochronologia 19:169–177Google Scholar
  21. Davis JC (1986) Statistics and data analysis in geology, 2nd edn. Wiley, New YorkGoogle Scholar
  22. Dorado Liñán I, Gutierrez E, Helle G, Heinrich I, Andreu-Hayles L, Plannels O, Leuenberger M, Bürger C, Schleser G (2011) Pooled versus separate measurements of tree-ring stable isotopes. Sci Total Environ 409:2244–2251CrossRefGoogle Scholar
  23. Elsig J, Schmitt J, Leuenberger D, Schneider R, Eyer M, Leuenberger M, Joos F, Fischer H, Stocker TF (2009) Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core. Nature 461:507–510. doi: 10.1038/nature08393 CrossRefGoogle Scholar
  24. Esper J, Cook ER, Krusic PJ, Peters K, Schweingruber FH (2003) Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Res 59:81–98Google Scholar
  25. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137CrossRefGoogle Scholar
  26. Feidas H, Makrogiannis T, Bora-Senta F (2004) Trend analysis of air temperature time series in Greece and their relationship with circulation using surface and satellite data: 1955–2001. Theor Appl Climatol 79:185–208CrossRefGoogle Scholar
  27. Fritts HC (1976) Tree rings and climate. Blackburn Press, CaldwellGoogle Scholar
  28. Gagen M, McCarroll D, Edouard J-L (2004) Latewood width, maximum density, and stable carbon isotope ratios of pine as climate indicators in a dry subalpine environment, French Alps. Arct Antarct Alp Res 36:166–171CrossRefGoogle Scholar
  29. Gagen M, McCarroll D, Edouard J-L (2006) Combining tree ring width, density and stable carbon isotope series to enhance the climate signal in tree rings: an example from the French Alps. Clim Change 78:363–379CrossRefGoogle Scholar
  30. Gassner G, Christiansen-Weniger F (1942) Dendroklimatologische Untersuchungen über die Jahresringentwicklung der Kiefern in Anatolien. Nova Acta Leopold 12:1–137Google Scholar
  31. Griggs CB, Degaetano AT, Kuniholm PI, Newton MW (2007) A regional reconstruction of May-June precipitation in the north Aegean from oak tree-rings, AD 1089–1989. Int J Climatol 27:1075–1089CrossRefGoogle Scholar
  32. Grove JM (1988) The little ice age. Methuen, LondonCrossRefGoogle Scholar
  33. Guan Z, Yamagata T (2003) The unusual summer of 1994 in East Asia: IOD Teleconnections. Geophys Res Lett. doi: 10.1029/2002GL016831 Google Scholar
  34. Hasanean HM (2004) Wintertime surface temperature in Egypt in relation to the associated atmospheric circulation. Int J Climatol 24:985–999. doi: 10.1002/joc.1043 CrossRefGoogle Scholar
  35. Heinrich I, Weidner K, Helle G, Vos H, Lindesay J, Banks JCG (2009) Interdecadal modulation of the relationship between ENSO, IPO and precipitation: insights from tree rings in Australia. Climate Dyn 33:63–73. doi: 10.1007/s00382-009-0544-5 CrossRefGoogle Scholar
  36. Holmes RL (1994) Dendrochronolgy program manual. Laboratory of Tree-Ring Research, TucsonGoogle Scholar
  37. Hughes MK, Kuniholm PI, Garfin GM, Latini C, Eischeid J (2001) Aegean tree-ring signature years explained. Tree-Ring Res 57:67–73Google Scholar
  38. Hughes MK, Swetnam TW, Diaz HF (2010) Dendroclimatology: developments in paleoenvironmental researchGoogle Scholar
  39. Hurrell JW (1996) Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys Res Lett 23:665–668CrossRefGoogle Scholar
  40. Jahren AH, Arens NC, Harbeson SA (2008) Prediction of atmospheric δ13CO2 using fossil plant tissues. Rev Geophys 46:1–12CrossRefGoogle Scholar
  41. Jenkins GM, Watts DG (1968) Spectral analysis and its applications. Holden-Day, San FranciscoGoogle Scholar
  42. Jones PD, Hulme M (1996) Calculating regional climatic time series for temperature and precipitation: methods and illustrations. Int J Climatol 16:361–377CrossRefGoogle Scholar
  43. Kadıoğlu M (1997) Trends in surface air temperature data over Turkey. Int J Climatol 17:511–520CrossRefGoogle Scholar
  44. Kadıoğlu M, Tulunay Y, Borhan Y (1999) Variability of Turkish precipitation compared to El Nino events. Geophys Res Lett 26:1597–1600CrossRefGoogle Scholar
  45. Köse N, Akkemik Ü, Dalfes HN, Özeren MS (2011) Tree-ring reconstructions of May–June precipitation for western Anatolia. Quat Res 75:438–450. doi: 10.1016/j.yqres.2010.12.005 CrossRefGoogle Scholar
  46. Krichak SO, Alpert P (2005) Decadal trends in the east Atlantic–west Russia pattern and Mediterranean precipitation. Int J Climatol 25:183–192. doi: 10.1002/joc.1124 CrossRefGoogle Scholar
  47. Krichak SO, Kishcha P, Alpert P (2002) Decadal trends of main Eurasian oscillations and the Mediterranean precipitation. Theor Appl Climatol 72:209–220CrossRefGoogle Scholar
  48. Kuniholm PE (1990) Archaeological evidence and non-evidence for climatic change. In: Runcorn SJ, Peckers J-C (eds) The Earth’s climate and variability of the sun over recent millennia. Philosophical Transactions of the Royal Society of London A 645–655Google Scholar
  49. Kutiel H, Benaroch Y (2002) North Sea-Caspian pattern (NCP)—an upper level atmospheric teleconnection affecting the Eastern Mediterranean: identification and definitions. Theor Appl Climatol 71:17–28CrossRefGoogle Scholar
  50. Kutiel H, Maheras P (1998) Variations in the temperature regime across the Mediterranean during the last century and their relationship with circulation indices. Theor Appl Climatol 61:39–53CrossRefGoogle Scholar
  51. Kutiel H, Türkeş M (2005) New evidence about the role of the North Sea-Caspian pattern (NCP) on the temperature and precipitation regimes in continental central Turkey. Geogr Ann A 87:501–513CrossRefGoogle Scholar
  52. Kutiel H, Maheras P, Türkeş M, Paz S (2002) North Sea-Caspian pattern (NCP)—an upper level atmospheric teleconnection affecting the eastern Mediterranean—implications on the regional climate. Theor Appl Climatol 72:173–192CrossRefGoogle Scholar
  53. Leavitt SW, Long A (1984) Sampling strategy for stable carbon isotope analysis of tree rings in pine. Nature 301:145–147CrossRefGoogle Scholar
  54. Leuenberger M (2007) To what extent can ice core data contribute to the understanding of plant ecological developments of the past? In: Dawson T, Siegwolf R (eds) Stable isotopes as indicators of ecological change. Academic Press, London, pp 211–234CrossRefGoogle Scholar
  55. Leuenberger M, Siegenthaler U, Langway CC (1992) Carbon isotope composition of atmospheric CO2 during the last ice-age from an Antarctic ice core. Nature 357:488–490CrossRefGoogle Scholar
  56. Loader NJ, Robertson I, Barker AC, Switsur VR, Waterhouse JS (1997) An improved technique for the batch processing of small wholewood samples to α-cellulose. Chem Geol 136:313–317CrossRefGoogle Scholar
  57. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503CrossRefGoogle Scholar
  58. Maheras P, Kutiel H (1999) Spatial and temporal variations in the temperature regime in the Mediterranean and their relationship with circulation during the last century. Int J Climatol 19:745–764CrossRefGoogle Scholar
  59. Maheras P, Patrikas I, Karacostas T, Anagnostopoulou C (2000) Automatic classification of circulation types in Greece: methodology, description, frequency, variability and trend analysis. Theor Appl Climatol 67:205–223CrossRefGoogle Scholar
  60. Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257CrossRefGoogle Scholar
  61. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Revi 23:771–801CrossRefGoogle Scholar
  62. McCarroll D, Gagen MH, Loader NJ, Robertson I, Anchukaitis KJ, Los S, Young GHF, Jalkanen R, Kirchhefer AJ, Waterhouse JS (2009) Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochim Cosmochim Acta 73:1539–1547CrossRefGoogle Scholar
  63. Meko DM (1981) Applications of Box-Jenkins Methods of time-series analysis to reconstruction of drought from tree rings, Ph.D. Dissertation, University of Arizona, Tucson, p 149Google Scholar
  64. Mitchell JM Jr, Dzerdzeevskii B, Flohn H, Hofmeyr WL, Lamb HH, Rao KN, Wallen CC (1966) Climate change. Report of a working group of the Commission for Climatology, World Meteorological Organization Technical Note 79, GenevaGoogle Scholar
  65. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617CrossRefGoogle Scholar
  66. Naumann C (1893) Vom Goldenen Horn zu den Quellen des Euphrat: Munich, LeipzigGoogle Scholar
  67. Panzac D (1985) La Peste Dans I’empire Ottoman 1700–1850. Editions Peeters, LouvainGoogle Scholar
  68. Pozo-Vázquez D, Gámiz-Fortis SR, Tovar-Pescador J, Esteban-Parra MJ, Castro-Díez Y (2005) El Niño-Southern Oscillation events and associated European winter precipitation anomalies. Int J Climatol 25:17–31CrossRefGoogle Scholar
  69. Proedrou M, Theoharatos G, Cartalis C (1997) Variations and trends in annual and seasonal air temperature in Greece determined from the ground and satellite measurements. Theor Appl Climatol 57:65–78CrossRefGoogle Scholar
  70. Ribera P, Garcia R, Diaz HF, Gimeno L, Hernandez E (2000) Trends and interannual oscillations in the main sea-level surface pressure patterns over the Mediterranean 1955–1990. Geophys Res Lett 27:1143–1146. doi: 10.1029/1999GL010899 CrossRefGoogle Scholar
  71. Rinn F (2003) TSAP-win: time series analysis and presentation for dendrochronology and related applications. Frank Rinn, HeidelbergGoogle Scholar
  72. Roberts N (1998) The Holocene: an environmental history. Blackwell, OxfordGoogle Scholar
  73. Rodwell MJ, Hoskins BJ (1996) Monsoons and the dynamics of deserts. Q J R Meteorol Soc 122:1385–1404CrossRefGoogle Scholar
  74. Saji NH, Yamagata T (2003) Possible impacts of Indian Ocean dipole mode events on global climate. Climate Res 25:151–169CrossRefGoogle Scholar
  75. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  76. Saurer M, Cherubini P, Bonani G, Siegwolf R (2003) Tracing carbon uptake from a natural CO2 spring into tree rings: an isotope approach. Tree Physiol 23:997–1004CrossRefGoogle Scholar
  77. Schönwiese CD (2008) Klimatologie. Ulmer, StuttgartGoogle Scholar
  78. Schubert BA, Jahren AH (2012) The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants. Geochim Cosmochim Acta 96:29–43Google Scholar
  79. Schweingruber FH (1983) Der Jahrring. Standort, Methodik, Zeit und Klima in der Dendrochronologie. Paul Haupt, BernGoogle Scholar
  80. Sevgi O, Akkemik Ü (2007) A Dendroecological study on Pinus nigra Arn. on the different altitudes of northern slopes of Kazdagları, Turkey. Indian J Environ Biol 28:73–75Google Scholar
  81. Solanki SK, Usoskin IG, Kromer B, Schüssler M, Beer J (2004) An unusually active Sun during recent decades compared to the previous 11,000 years. Nature 431:1084–1087CrossRefGoogle Scholar
  82. Telelis IG (2005) Historical-climatological information from the time of the Byzantine Empire (4th–15th centuries AD). Hist Meteorol 2:41–50Google Scholar
  83. Telelis IG (2008) Climatic fluctuations in the Eastern Mediterranean and the Middle East AD 300–1500 from Byzantine documentary and proxy physical palaeoclimatic evidence—a comparison. Jahrb Österr Byzantinistik 58:167–207CrossRefGoogle Scholar
  84. Thompson DWJ, Wallace JM (1998) The Artic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300CrossRefGoogle Scholar
  85. Touchan R, Garfin GM, Meko DM, Funkhouser G, Erkan N, Hughes MK, Wallin BS (2003) Preliminary reconstructions of spring precipitation in southwestern Turkey from tree-ring width. Int J Climatol 23:157–171CrossRefGoogle Scholar
  86. Touchan R, Xoplaki E, Funkhouser G, Luterbacher J, Hughes MK, Erkan N, Akkemik U, Stephan J (2005) Reconstruction of spring/summer precipitation for the Eastern Mediterranean from tree ring widths and its connection to large-scale atmospheric circulation. Climate Dyn 25:75–98CrossRefGoogle Scholar
  87. Touchan R, Akkemik Ü, Hughes MK, Erkan N (2007) May–June precipitation reconstruction of southwestern Anatolia, Turkey during the last 900 years from tree rings. Quat Res 68:196–202CrossRefGoogle Scholar
  88. Treydte K, Schleser GH, Schweingruber FH, Winiger M (2001) The climatic significance of δ13C in subalpine spruces (Lötschental, Swiss Alps)—a case study with respect to altitude, exposure and soil moisture. Tellus 53:593–611CrossRefGoogle Scholar
  89. Treydte K, Schleser GH, Helle G, Frank DC, Winiger M, Haug GH, Esper J (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182CrossRefGoogle Scholar
  90. Troeng E, Linder S (1982) Gas exchange in a 20-year-old stand of Scots pine. Physiol Plantarum 54:7–23CrossRefGoogle Scholar
  91. Türkeş M (1996) Spatial and temporal analysis of annual rainfall variations in Turkey. Int J Climatol 16:1057–1076CrossRefGoogle Scholar
  92. Türkeş M (1998) Influence of geopotential heights, cyclone frequency and Southern Oscillation on rainfall variations in Turkey. Int J Climatol 18:649–680CrossRefGoogle Scholar
  93. Türkeş M, Erlat E (2003) Precipitation changes and variability in Turkey linked to the North Atlantic oscillation during the period 1930–2000. Int J Climatol 23:1771–1796CrossRefGoogle Scholar
  94. Türkeş M, Erlat E (2008) Influence of the Arctic Oscillation on variability of winter mean temperatures in Turkey. Theor Appl Climatol 92:75–85. doi: 10.1007/s00704-007-0310-8 CrossRefGoogle Scholar
  95. Türkeş M, Erlat E (2009) Winter mean temperature variability in Turkey associated with the North Atlantic Oscillation. Meteorol Atmos Phys 105:211–225. doi: 10.1007/s00703-009-0046-3 CrossRefGoogle Scholar
  96. Türkeş M, Sümer U, Kiliç G (1995) Variations and trends in annual mean air temperatures in Turkey with respect to climatic variability. Int J Climatol 15:557–569CrossRefGoogle Scholar
  97. Türkeş M, Sümer UM, Kiliç G (2002a) Persistence and periodicity in the precipitation series of Turkey and associations with 500 hPa geopotential heights. Climate Res 21:59–81CrossRefGoogle Scholar
  98. Türkeş M, Sümer UM, Demir I (2002b) Re-evaluation of trends and changes in mean, maximum and minimum temperatures of Turkey for the period 1929–1999. Int J Climatol 22:947–977CrossRefGoogle Scholar
  99. Turkish General Directorate of Meteorology (2008) Weather Station Databanks of Turkish General Directorate of Meteorology, AnkaraGoogle Scholar
  100. van Oldenborgh GJ, Burgers G (2005) Searching for decadal variations in ENSO precipitation teleconnections. Geophys Res Lett 32:L15701. doi: 10.1029/2005GL023110 CrossRefGoogle Scholar
  101. Voelker SL, Muzika R-M, Guyette RP, Stambaugh MC (2006) Historical CO2 growth enhancement declines with age in Quercus and Pinus. Ecol Monogr 76:549–564CrossRefGoogle Scholar
  102. von Hammer-Purgstall J (1834–1836) Geschichte des osmanischen Reiches. Pesth, HartlebenGoogle Scholar
  103. von Lürthe A (1991) Dendroökologische Untersuchungen an Kiefern und Eichen in den stadtnahen Berliner Forsten. Landschaftsentwicklung und Umweltforschung. Schriftenreihe des Fachbereichs Landschaftsentwicklung der TU Berlin 77, p 186Google Scholar
  104. Wahl ER, Anderson DM, Bauer BA, Buckner R, Gille EP, Gross WS, Hartman M, Shah A (2010) An archive of high-resolution temperature reconstructions over the past 2 + millennia. Geochem Geophys Geosyst 11:Q01001. doi: 10.1029/2009GC002817 CrossRefGoogle Scholar
  105. Wang D, Wang C, Yang X, Lu J (2005) Winter Northern Hemisphere surface air temperature variability associated with the Arctic Oscillation and North Atlantic Oscillation. Geophys Res Lett 32:L16706. doi: 10.1029/2005GL022952 CrossRefGoogle Scholar
  106. Werner A, Schönwiese C-D (2002) A statistical analysis of the North Atlantic Oscillation and its impact on European temperature. Global Atmos Ocean Syst 8:293–306CrossRefGoogle Scholar
  107. Wigley TML, Briffa K, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213CrossRefGoogle Scholar
  108. Wilson AT, Grinsted MJ (1977) 12C/13C in cellulose and lignin as palaeothermometers. Nature 265:133–135CrossRefGoogle Scholar
  109. Xoplaki E (2002) Climate variability over the Mediterranean. Ph.D. thesis, University of Bern, p 193Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ingo Heinrich
    • 1
    Email author
  • Ramzi Touchan
    • 2
  • Isabel Dorado Liñán
    • 1
  • Heinz Vos
    • 3
  • Gerhard Helle
    • 1
  1. 1.Helmholtz Centre Potsdam, GFZ German Research Centre for GeosciencesClimate Dynamics and Landscape EvolutionPotsdamGermany
  2. 2.Laboratory of Tree-Ring ResearchUniversity of ArizonaTucsonUSA
  3. 3.Forschungszentrum Jülich, Institute for Chemistry and Dynamics of the GeosphereJülichGermany

Personalised recommendations