Climate Dynamics

, Volume 41, Issue 7–8, pp 2039–2060 | Cite as

Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic Region over the last 2,000 years

  • Sami Hanhijärvi
  • Martin P. Tingley
  • Atte Korhola
Article

Abstract

Existing multi-proxy climate reconstruction methods assume the suitably transformed proxy time series are linearly related to the target climate variable, which is likely a simplifying assumption for many proxy records. Furthermore, with a single exception, these methods face problems with varying temporal resolutions of the proxy data. Here we introduce a new reconstruction method that uses the ordering of all pairs of proxy observations within each record to arrive at a consensus time series that best agrees with all proxy records. The resulting unitless composite time series is subsequently calibrated to the instrumental record to provide an estimate of past climate. By considering only pairwise comparisons, this method, which we call PaiCo, facilitates the inclusion of records with differing temporal resolutions, and relaxes the assumption of linearity to the more general assumption of a monotonically increasing relationship between each proxy series and the target climate variable. We apply PaiCo to a newly assembled collection of high-quality proxy data to reconstruct the mean temperature of the Northernmost Atlantic region, which we call Arctic Atlantic, over the last 2,000 years. The Arctic Atlantic is a dynamically important region known to feature substantial temperature variability over recent millennia, and PaiCo allows for a more thorough investigation of the Arctic Atlantic regional climate as we include a diverse array of terrestrial and marine proxies with annual to multidecadal temporal resolutions. Comparisons of the PaiCo reconstruction to recent reconstructions covering larger areas indicate greater climatic variability in the Arctic Atlantic than for the Arctic as a whole. The Arctic Atlantic reconstruction features temperatures during the Roman Warm Period and Medieval Climate Anomaly that are comparable or even warmer than those of the twentieth century, and coldest temperatures in the middle of the nineteenth century, just prior to the onset of the recent warming trend.

Keywords

Multiproxy reconstruction Pairwise comparisons Non-linear method North Atlantic Temperature 

Supplementary material

382_2013_1701_MOESM1_ESM.zip (999 kb)
Supplementary material 1 (ZIP 999 kb)

References

  1. Ammann CM, Genton MG, Li B (2010) Technical note: correcting for signal attenuation from noisy proxy data in climate reconstructions. Clim Past 6(2):273–279. doi:10.5194/cp-6-273-2010 CrossRefGoogle Scholar
  2. Anchukaitis KJ, Breitenmoser P, Briffa KR, Buchwal A, Büntgen U, Cook ER, D’Arrigo RD, Esper J, Evans MN, Frank D, Grudd H, Gunnarson BE, Hughes MK, Kirdyanov AV, Körner C, Krusic PJ, Luckman B, Melvin TM, Salzer MW, Shashkin AV, Timmreck C, Vaganov EA, Wilson RJS (2012) Tree rings and volcanic cooling. Nat Geosci 5(12):836–837. doi:10.1038/ngeo1645 CrossRefGoogle Scholar
  3. Bengtsson L, Semenov VA, Johannessen OM (2004) The early twentieth-century warming in the arctic—a possible mechanism. J Clim 17(20):4045–4057. doi:10.1175/1520-0442(2004017<4045:TETWIT>2.0.CO;2) CrossRefGoogle Scholar
  4. Bergthórsson P (1969) An estimate of drift ice and temperature in Iceland in 1,000 years. Jökull 19:94–101Google Scholar
  5. Berner KS, Koç N, Godtliebsen F, Divine D (2011) Holocene climate variability of the Norwegian Atlantic current during high and low solar insolation forcing. Paleoceanography 26. doi:10.1029/2010PA002002
  6. Bingham NH, Fry JM (2010) Regression: linear models in statistics. Springer, LondonGoogle Scholar
  7. Bonnans JF (2006) Numerical optimization theoretical and practical aspects. Springer, BerlinGoogle Scholar
  8. Bradley RS, Briffa KR, Cole J, Hughes MK, Osborn TJ (2003) The climate of the last millennium. In: Alverson K, Bradley RS, Pedersen TF (eds) Paleoclimate, global change, and the future. Springer, Berlin, pp 105–141Google Scholar
  9. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res 111(D12). doi:10.1029/2005JD006548
  10. Brönnimann S (2009) Early twentieth-century warming. Nat Geosci 2(11):735–736. doi:10.1038/ngeo670 CrossRefGoogle Scholar
  11. Calvo E, Grimalt J, Jansen E (2002) High resolution U37K sea surface temperature reconstruction in the Norwegian sea during the Holocene. Quat Sci Rev 21(12–13):1385–1394. doi:10.1016/S0277-3791(01)00096-8 CrossRefGoogle Scholar
  12. Christiansen B, Ljungqvist FC (2011) Reconstruction of the extratropical NH mean temperature over the last millennium with a method that preserves low-frequency variability. J Clim 24(23):6013–6034. doi:10.1175/2011JCLI4145.1 Google Scholar
  13. Chylek P, Folland CK, Lesins G, Dubey MK, Wang M (2009) Arctic air temperature change amplification and the Atlantic multidecadal oscillation. Geophys Res Lett 36:5. doi:200910.1029/2009GL038777 CrossRefGoogle Scholar
  14. Cook ER, Briffa KR, Meko DM, Graybill DA, Funkhouser G (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene 5(2):229–237. doi:10.1177/095968369500500211 CrossRefGoogle Scholar
  15. Delworth TL, Knutson TR (2000) Simulation of early 20th century global warming. Science 287(5461):2246–2250. doi:10.1126/science.287.5461.2246 CrossRefGoogle Scholar
  16. Denton G, Alley R, Comer G, Broecker W (2005) The role of seasonality in abrupt climate change. Quat Sci Rev 24(10–11):1159–1182. doi:10.1016/j.quascirev.2004.12.002 CrossRefGoogle Scholar
  17. Diaz HF, Trigo R, Hughes MK, Mann ME, Xoplaki E, Barriopedro D (2011) Spatial and temporal characteristics of climate in medieval times revisited. Bull Am Meteorol Soc 92(11):1487–1500. doi:10.1175/BAMS-D-10-05003.1 CrossRefGoogle Scholar
  18. Divine D, Isaksson E, Martma T, Meijer HA, Moore J, Pohjola V, van de Wal RS, Godtliebsen F (2011) Thousand years of winter surface air temperature variations in Svalbard and northern Norway reconstructed from ice-core data. Polar Res 30. doi:10.3402/polar.v30i0.7379
  19. Evans MN, Reichert BK, Kaplan A, Anchukaitis KJ, Vaganov EA, Hughes MK, Cane MA (2006) A forward modeling approach to paleoclimatic interpretation of tree-ring data. J Geophys Res 111(G3):G03,008. doi:10.1029/2006JG000166 CrossRefGoogle Scholar
  20. Frank DC, Esper J, Raible CC, Büntgen U, Trouet V, Stocker B, Joos F (2010) Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463(7280):527–530. doi:10.1038/nature08769 CrossRefGoogle Scholar
  21. Gildor H, Tziperman E (2003) Sea-ice switches and abrupt climate change. Philos Trans R Soc A 361(1810):1935–1944. doi:10.1098/rsta.2003.1244 CrossRefGoogle Scholar
  22. Goosse H, Crespin E, Dubinkina S, Loutre MF, Mann M, Renssen H, Sallaz-Damaz Y, Shindell D (2012) The role of forcing and internal dynamics in explaining the “Medieval climate anomaly”. Clim Dyn:1–20. doi:10.1007/s00382-012-1297-0
  23. Graham N, Ammann C, Fleitmann D, Cobb K, Luterbacher J (2011) Support for global climate reorganization during the “Medieval climate anomaly”. Clim Dyn 37(5):1217–1245. doi:10.1007/s00382-010-0914-z CrossRefGoogle Scholar
  24. Grootes PM, Stuiver M (1997) Oxygen 18/16 variability in Greenland snow and ice with 10^3- to 10^5-year time resolution. J Geophys Res 102(C12):26455–26470. doi:199710.1029/97JC00880 Google Scholar
  25. Grudd H (2008) Torneträsk tree-ring width and density ad 500–2004: a test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim Dyn 31:843–857. doi:10.1007/s00382-007-0358-2 CrossRefGoogle Scholar
  26. Gunnarson BE, Linderholm HW, Moberg A (2010) Improving a tree-ring reconstruction from west-central Scandinavia: 900 years of warm-season temperatures. Clim Dyn 36:97–108. doi:10.1007/s00382-010-0783-5 CrossRefGoogle Scholar
  27. Haltia-Hovi E, Saarinen T, Kukkonen M (2007) A 2000-year record of solar forcing on varved lake sediment in eastern Finland. Quat Sci Rev 26(5–6):678–689. doi:10.1016/j.quascirev.2006.11.005 CrossRefGoogle Scholar
  28. Helama S, Fauria MM, Mielikäinen K, Timonen M, Eronen M (2010) Sub-milankovitch solar forcing of past climates: mid and late Holocene perspectives. Geol Soc Am Bull 122(11–12):1981–1988. doi:10.1130/B30088.1 CrossRefGoogle Scholar
  29. Isaksson E, Divine D, Kohler J, Martma T, Pohjola V, Motoyama H, Watanabe O (2005) Climate oscillations as recorded in Svalbard ice core omega18O records between AD 1200 and 1997. Geografiska Annaler Ser A 87:203–214. doi:10.1111/j.0435-3676.2005.00253.x CrossRefGoogle Scholar
  30. Jiang H, Eiriksson J, Schulz M, Knudsen KL, Seidenkrantz MS (2005) Evidence for solar forcing of sea-surface temperature on the north Icelandic shelf during the late Holocene. Geology 33(1):73–76. doi:10.1130/G21130.1 CrossRefGoogle Scholar
  31. Jungclaus JH (2009) Palaeoclimate: lessons from the past millennium. Nat Geosci 2(7):468–470. doi:10.1038/ngeo559 CrossRefGoogle Scholar
  32. Kaspi Y, Sayag R, Tziperman E (2004) A “triple sea-ice state” mechanism for the abrupt warming and synchronous ice sheet collapses during Heinrich events. Paleoceanography 19:12. doi:200410.1029/2004PA001009 CrossRefGoogle Scholar
  33. Kaufman DS, Schneider DP, McKay NP, Ammann CM, Bradley RS, Briffa KR, Miller GH, Otto-Bliesner BL, Overpeck JT, Vinther BM, Abbott M, Axford Y, Bird B, Birks HJB, Bjune AE, Briner J, Cook T, Chipman M, Francus P, Gajewski K, Geirsdottir A, Hu FS, Kutchko B, Lamoureux S, Loso M, MacDonald G, Peros M, Porinchu D, Schiff C, Seppa H, Thomas E (2009) Recent warming reverses long-term Arctic cooling. Science 325(5945):1236–1239. doi:10.1126/science.1173983 CrossRefGoogle Scholar
  34. Kirchhefer AJ (2001) Reconstruction of summer temperatures from tree-rings of scots pine (pinus sylvestris l.) in coastal northern Norway. Holocene 11(1):41–52. doi:10.1191/095968301670181592 CrossRefGoogle Scholar
  35. Korhola A, Weckström J, Holmström L, Erästö P (2000) A quantitative Holocene climatic record from diatoms in northern Fennoscandia. Quat Res 54(2):284–294. doi:10.1006/qres.2000.2153 CrossRefGoogle Scholar
  36. Kotlyakov V, Arkhipov S, Henderson K, Nagornov O (2004) Deep drilling of glaciers in Eurasian Arctic as a source of paleoclimatic records. Quat Sci Rev 23(11–13):1371–1390. doi:10.1016/j.quascirev.2003.12.013 CrossRefGoogle Scholar
  37. Lamb HH (1995) Climate, history and the modern world. Routledge, LondonGoogle Scholar
  38. Lee TCK, Zwiers FW, Tsao M (2008) Evaluation of proxy-based millennial reconstruction methods. Clim Dyn 31(2–3):263–281. doi:10.1007/s00382-007-0351-9 CrossRefGoogle Scholar
  39. Li B, Nychka DW, Ammann CM (2010) The value of multiproxy reconstruction of past climate. J Am Stat Assoc 105(491):883–895. doi:10.1198/jasa.2010.ap09379 CrossRefGoogle Scholar
  40. Li C, Battisti DS, Schrag DP, Tziperman E (2005) Abrupt climate shifts in Greenland due to displacements of the sea ice edge. Geophys Res Lett 32:4. doi:200510.1029/2005GL023492 Google Scholar
  41. Linge H, Lauritzen SE, Andersson C, Hansen JK, Skoglund RO, Sundqvist HS (2009) Stable isotope records for the last 10,000 years from Okshola cave (Fauske, northern Norway) and regional comparisons. Clim Past 5:667–682. doi:10.5194/cp-5-667-2009 CrossRefGoogle Scholar
  42. Lipovetsky S, Conklin WM (2004) Thurstone scaling via binary response regression. Stat Methodol 1(1–2):93–104. doi:10.1016/j.statmet.2004.04.001 CrossRefGoogle Scholar
  43. Ljungqvist FC (2010) A new reconstruction of the temperature variability in the extra-tropical northern hemisphere during the last two millenia. Geografiska Ann Ser A Phys Geogr 92(3):339–351. doi:10.1111/j.1468-0459.2010.00399.x CrossRefGoogle Scholar
  44. Luoto TP, Sarmaja-Korjonen K, Nevalainen L, Kauppila T (2009) A 700 year record of temperature and nutrient changes in a small eutrophied lake in southern Finland. Holocene 19(7):1063–1072. doi:10.1177/0959683609341002 CrossRefGoogle Scholar
  45. Maidment D (1993) Handbook of hydrology, 1st edn. McGraw-Hill Professional, New YorkGoogle Scholar
  46. Mann ME, Rutherford S, Wahl E, Ammann C (2007) Robustness of proxy-based climate field reconstruction methods. J Geophys Res 112(D12). doi:10.1029/2006JD008272
  47. Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci 105(36):13252–13257. doi:10.1073/pnas.0805721105 CrossRefGoogle Scholar
  48. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326(5957):1256–1260. doi:10.1126/science.1177303 CrossRefGoogle Scholar
  49. Mann ME, Fuentes JD, Rutherford S (2012a) Reply to ‘Tree rings and volcanic cooling’. Nature Geosci 5(12):837–838. doi:10.1038/ngeo1646 CrossRefGoogle Scholar
  50. Mann ME, Fuentes JD, Rutherford S (2012b) Underestimation of volcanic cooling in tree-ring-based reconstructions of hemispheric temperatures. Nat Geosci. doi:10.1038/ngeo1394
  51. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11(2):431. doi:10.1137/0111030 CrossRefGoogle Scholar
  52. Marshall J, Kushnir Y, Battisti D, Chang P, Czaja A, Dickson R, Hurrell J, McCartney M, Saravanan R, Visbeck M (2001) North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol 21(15):1863–1898. doi:10.1002/joc.693 CrossRefGoogle Scholar
  53. McDermott F, Mattey DP, Hawkesworth C (2001) Centennial-scale Holocene climate variability revealed by a high-resolution speleothem δ18O record from SW Ireland. Science 294(5545):1328–1331. doi:10.1126/science.1063678 CrossRefGoogle Scholar
  54. McKay NP, Kaufman DS, Michelutti N (2008) Biogenic silica concentration as a high-resolution, quantitative temperature proxy at Hallet lake, south-central Alaska. Geophys Res Lett 35:6. doi:200810.1029/2007GL032876 CrossRefGoogle Scholar
  55. Miller G, Brigham-Grette J, Alley R, Anderson L, Bauch H, Douglas M, Edwards M, Elias S, Finney B, Fitzpatrick J, Funder S, Herbert T, Hinzman L, Kaufman D, MacDonald G, Polyak L, Robock A, Serreze M, Smol J, Spielhagen R, White J, Wolfe A, Wolff E (2010) Temperature and precipitation history of the Arctic. Quat Sci Rev 29(15–16):1679–1715. doi:10.1016/j.quascirev.2010.03.001 CrossRefGoogle Scholar
  56. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlen W (2005) Highly variable northern hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433(7026):613–617. doi:10.1038/nature03265 CrossRefGoogle Scholar
  57. O’Brien SR, Mayewski PA, Meeker LD, Meese DA, Twickler MS, Whitlow SI (1995) Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270(5244):1962–1964. doi:10.1126/science.270.5244.1962 CrossRefGoogle Scholar
  58. Ojala AE, Alenius T (2005) 10000 years of interannual sedimentation recorded in the lake Nautajärvi (finland) clastic-organic varves. Palaeogeogr Palaeoclimatol Palaeoecol 219:285–302. doi:10.1016/j.palaeo.2005.01.002 CrossRefGoogle Scholar
  59. Overpeck J, Hughen K, Hardy D, Bradley R, Case R, Douglas M, Finney B, Gajewski K, Jacoby G, Jennings A, Lamoureux S, Lasca A, MacDonald G, Moore J, Retelle M, Smith S, Wolfe A, Zielinski G (1997) Arctic environmental change of the last four centuries. Science 278(5341):1251–1256. doi:10.1126/science.278.5341.1251 CrossRefGoogle Scholar
  60. Patterson WP, Dietrich KA, Holmden C, Andrews JT (2010) Two millennia of north Atlantic seasonality and implications for Norse colonies. Proc Nat Acad Sci 107(12):5306–5310. doi:10.1073/pnas.0902522107 CrossRefGoogle Scholar
  61. Pflaumann U, Duprat J, Pujol C, Labeyrie LD (1996) SIMMAX: a modern analog technique to deduce atlantic sea surface temperatures from planktonic foraminifera in deep-sea sediments. Paleoceanography 11(1):15. doi:10.1029/95PA01743 CrossRefGoogle Scholar
  62. Schneider T (2001) Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J Clim 14:853–871CrossRefGoogle Scholar
  63. Schwager M (1999) Ice core analysis on the spatial and temporal variability of temperature and precipitation during the late Holocene in north Greenland. PhD thesis, Alfred-Wegener-Institut für Polar- und MeeresforschungGoogle Scholar
  64. Sejrup H, Haflidason H, Andrews J (2011) A Holocene north Atlantic SST record and regional climate variability. Quat Sci Rev 30(21–22):3181–3195. doi:10.1016/j.quascirev.2011.07.025 CrossRefGoogle Scholar
  65. Sicre MA, Hall IR, Mignot J, Khodri M, Ezat U, Truong MX, Eiríksson J, Knudsen KL (2011) Sea surface temperature variability in the subpolar Atlantic over the last two millennia. Paleoceanography. doi:10.1029/2011PA002169
  66. Spielhagen RF, Werner K, Sørensen SA, Zamelczyk K, Kandiano E, Budeus G, Husum K, Marchitto TM, Hald M (2011) Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science 331(6016):450–453. doi:10.1126/science.1197397 CrossRefGoogle Scholar
  67. Stern H (1990) A continuum of paired comparisons models. Biometrika 77(2):265–273. doi:10.1093/biomet/77.2.265 CrossRefGoogle Scholar
  68. Sundqvist HS, Zhang Q, Moberg A, Holmgren K, Körnich H, Nilsson J, Brattström G (2010) Climate change between the mid and late Holocene in northern high latitudes—part 1: survey of temperature and precipitation proxy data. Clim Past 6(5):591–608. doi:10.5194/cp-6-591-2010 CrossRefGoogle Scholar
  69. Thurstone LL (1927) A law of comparative judgment. Psychol Rev 34(4):273–286. doi:10.1037/h0070288 CrossRefGoogle Scholar
  70. Tiljander M, Saarnisto M, Ojala AEK, Saarinen T (2003) A 3000-year palaeoenvironmental record from annually laminated sediment of lake Korttajärvi, Central Finland. Boreas 32(4):566–577. doi:10.1111/j.1502-3885.2003.tb01236.x CrossRefGoogle Scholar
  71. Timmermann A, An SI, Krebs U, Goosse H (2005) ENSO suppression due to weakening of the North Atlantic thermohaline circulation. J Clim 18(16):3122–3139. doi:10.1175/JCLI3495.1 CrossRefGoogle Scholar
  72. Tingley MP (2012) A Bayesian ANOVA scheme for calculating climate anomalies, with applications to the instrumental temperature record. J Clim 25:777–791. Code is available at ftp://ftp.ncdc.noaa.gov/pub/data/paleo/softlib/anova
  73. Tingley MP, Huybers P (2010a) A Bayesian algorithm for reconstructing climate anomalies in space and time. Part I: development and applications to paleoclimate reconstruction problems. J Clim 23(10):2759–2781. doi:10.1175/2009JCLI3015.1 CrossRefGoogle Scholar
  74. Tingley MP, Huybers P (2010b) A Bayesian algorithm for reconstructing climate anomalies in space and time. Part II: comparison with the regularized expectation–maximization algorithm. J Clim 23(10):2782–2800. doi:10.1175/2009JCLI3016.1 CrossRefGoogle Scholar
  75. Tingley MP, Craigmile PF, Haran M, Li B, Mannshardt E, Rajaratnam B (2012) Piecing together the past: statistical insights into paleoclimatic reconstructions. Quat Sci Rev 35:1–22. doi:10.1016/j.quascirev.2012.01.012 CrossRefGoogle Scholar
  76. Tolwinski-Ward SE, Evans MN, Hughes MK, Anchukaitis KJ (2011) An efficient forward model of the climate controls on interannual variation in tree-ring width. Clim Dyn 36(11–12):2419–2439. doi:10.1007/s00382-010-0945-5 CrossRefGoogle Scholar
  77. Vinther B, Jones P, Briffa K, Clausen H, Andersen K, Dahl-Jensen D, Johnsen S (2010) Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat Sci Rev 29(3–4):522–538. doi:10.1016/j.quascirev.2009.11.002 CrossRefGoogle Scholar
  78. Vinther BM, Clausen HB, Johnsen SJ, Rasmussen SO, Andersen KK, Buchardt SL, Dahl-Jensen D, Seierstad IK, Siggaard-Andersen ML, Steffensen JP, Svensson A, Olsen J, Heinemeier J (2006) A synchronized dating of three Greenland ice cores throughout the Holocene. J Geophys Res 111:11. doi:200610.1029/2005JD006921 Google Scholar
  79. Vinther BM, Clausen HB, Fisher DA, Koerner RM, Johnsen SJ, Andersen KK, Dahl-Jensen D, Rasmussen SO, Steffensen JP, Svensson AM (2008) Synchronizing ice cores from the Renland and Agassiz ice caps to the Greenland ice core chronology. J Geophys Res 113. doi:10.1029/2007JD009143
  80. Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA, Li X (2005) The Holocene asian monsoon: links to solar changes and north atlantic climate. Science 308(5723):854–857. doi:10.1126/science.1106296 CrossRefGoogle Scholar
  81. Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to late holocene climate change: an overview. Quat Sci Rev 27(19–20):1791–1828. doi:10.1016/j.quascirev.2008.06.013 CrossRefGoogle Scholar
  82. Welch P (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15(2):70–73. doi:10.1109/TAU.1967.1161901 CrossRefGoogle Scholar
  83. Wood KR, Overland JE (2010) Early 20th century arctic warming in retrospect. Int J Climatol 30(9):1269–1279. doi:10.1002/joc.1973 Google Scholar
  84. Wunsch C (2006) Abrupt climate change: an alternative view. Quat Res 65(2):191–203. doi:10.1016/j.yqres.2005.10.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sami Hanhijärvi
    • 1
  • Martin P. Tingley
    • 2
  • Atte Korhola
    • 1
  1. 1.Department of Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Earth and Planetary SciencesHarvard UniversityCambridgeUSA

Personalised recommendations