Climate Dynamics

, Volume 41, Issue 5–6, pp 1229–1244 | Cite as

A case study of a modelled episode of low Arctic sea ice



Simulations of the Arctic sea ice cover over the last 32 years generated by the HadGEM1 coupled climate model are able to capture the observed long term decline in mean September ice extent. HadGEM1 is also capable of producing an episode of low September ice extent of similar magnitude to the anomalously low extent observed in 2007. Using a heat budget analysis, together with diagnostics partitioning the changes in ice and snow mass into thermodynamic and dynamic components, we analyse the factors driving the long term decline in the ice mass and extent as well as those causing the modelled low ice event. The long term decline in the mass of ice and snow in HadGEM1 is largely due to extra melting during the summer, partly at the top surface of the ice, and partly via extra heating from the ocean as it warms due to the ice retreat. The episode of low summer ice extent is largely driven by the synoptic conditions over the summer moving the ice across and out of the Arctic basin, and also due to pre-conditioning of the snow and ice which is thinner than usual in the Eastern Arctic at the start of the melt season. This case study demonstrates that although HadGEM1 does not capture the persistent dipole pressure anomaly observed during the summer of 2007, it represents broadly similar mechanisms of generating a low ice extent.


  1. Alexander MA, Bhatt US, Walsh JE, Timlin MS, Miller JS, Scott JD (2004) The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Clim 17:890–905. doi:10.1175/1520-0442 CrossRefGoogle Scholar
  2. Banks HT, Stark S, Keen AB (2007) The adjustment of the coupled climate model HadGEM1 toward equilibrium and the impact on global climate. J Clim 20:5815–5826. doi:10.1175/2007JCLI1688.1 CrossRefGoogle Scholar
  3. Bitz CM, Roe GH (2004) A Mechanism for the high rate of sea ice thinning in the Arctic Ocean. J Clim 17:3623–3632. doi:10.1175/1520-0442 CrossRefGoogle Scholar
  4. Curry JA, Schramm JL, Perovich DK, Pinto JO (2001) Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations. J Geophys Res 106:D14. doi:10.1029/2000JD900311 Google Scholar
  5. Deser C, Magnusdottir G, Saravanan R, Phillips A (2004) The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: direct and indirect components of the response. J Clim 17:877–889CrossRefGoogle Scholar
  6. Deser C, Thomas RA, Peng S (2007) The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J Clim 20:4751–4767CrossRefGoogle Scholar
  7. Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102(C6):12609–12646. doi:10.1029/97JC00480 Google Scholar
  8. Francis JA, Chan W, Leathers DJ, Miller JR, Veron DE (2009) Winter Northern Hemisphere weather patterns remember summer Arctic sea ice extent. Geophys Res Lett 36:L07503. doi:10.1029/2009GL037274 CrossRefGoogle Scholar
  9. Graversen RG, Mauritsen T, Drijfhout S, Tjernström M, Mårtensson S (2011) Warm winds from the Pacific caused extensive Arctic sea-ice melt in summer 2007. Clim Dyn 36:2103–2112. doi:10.1007/s00382-010-0809 CrossRefGoogle Scholar
  10. Guemas V, Salas-Melia D (2008) Simulation of the Atlantic meridional overturning circulation in an atmosphere-ocean global coupled model. Part II: weakening in a climate change experiment: a feedback mechanism. Clim Dyn 30:831–844. doi:10.1007/s00382-007-0328-8 CrossRefGoogle Scholar
  11. Hibler WD (1979) A dynamical thermodynamic sea ice model. J Phys Oceanogr 9:815–846CrossRefGoogle Scholar
  12. Holland MM, Bitz CM, Eby M, Weaver AJ (2001) The role of ice–ocean interactions in the variability of the North Atlantic thermohaline circulation. J Clim 14(5):656–675. doi:10.1175/1520-0442(2001)014<0656:TROIOI>2.0.CO;2 Google Scholar
  13. Holland MM, Serreze MC, Stroeve J (2010) The sea ice mass budget of the Arctic and it’s future change as simulated by coupled climate models. Clim Dyn 34:185–200. doi:10.1007/s00382-008-0493-4 CrossRefGoogle Scholar
  14. Holland MM, Bailey DA, Vavrus S (2011) Inherent sea ice predictability in the rapidly changing Arctic environment of the community climate system model, version 3. Clim Dyn 36(7–8):1239–1253. doi:10.1007/s00382-010-0792-4 Google Scholar
  15. Hunke EC, Dukowicz JK (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867. doi:10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2 CrossRefGoogle Scholar
  16. Hunke EC, Lipscomb WH (2004) CICE: the Los Alamos sea ice model, documentation and software, version 3.1, LA-CC-98-16, Los Alamos Natl. Lab., Los Alamos, N. MGoogle Scholar
  17. Johns TC et al (2006) The new Hadley Centre climate model (HadGEM1): evaluation of coupled simulations. J Clim 19:1327–1353. doi:10.1175/JCLI3712.1 CrossRefGoogle Scholar
  18. Jones GS, Christidis N, Stott PA (2011) Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near surface temperature changes. Atmos Chem Phys 11:799–816. doi:10.5194/acp-11-799-2011 CrossRefGoogle Scholar
  19. Kauker F, Kaminski T, Karcher M, Giering R, Gerdes R, Voßbeck M (2009) Adjoint analysis of the 2007 all time Arctic sea-ice minimum. Geophys Res Lett 36:L03707. doi:10.1029/2008GL036323 CrossRefGoogle Scholar
  20. Kwok R (2008) Summer sea ice motion from the 18 GHz channel of AMSR-E and the exchange of sea ice between the Pacific and Atlantic sectors. Geophys Res Lett 35:L03504. doi:10.1029/2007GL032692 CrossRefGoogle Scholar
  21. L’Heureux ML, Kumar A, Bell GD, Halpert MS, Higgins RW (2008) Role of the Pacific-North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophys Res Lett 35:L20701. doi:10.1029/2008GL035205
  22. Lindsay RW, Zhang J (2005) The thinning of Arctic sea ice, 1988–2003: have we passed a tipping point? J Clim 18:4879–4894. doi: Google Scholar
  23. Lindsay RW, Zhang J, Schweiger A, Steele M, Stern H (2009). Arctic sea ice retreat in 2007 follows thinning trend. J Clim 22(1):165–176. doi:10.1175/2008JCLI2521.1 Google Scholar
  24. Lipscomb WH (2001) Remapping the thickness distribution in sea ice models. J Geophys Res 106:13989–14000. doi:10.1029/2000JC000518 Google Scholar
  25. Magnusdottir G, Deser C, Saravanan R (2004) The effects of North Atlantic SST and sea-ice anomalies on the winter circulation in CCM3. Part I: main features and storm-track characteristics of the response. J Clim 17:857–876CrossRefGoogle Scholar
  26. Maslanik J, Drobot S, Fowler C, Emery W, Barry R (2007a) On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys Res Lett 34(3):Article Number: L03711. doi:10.1029/2006GL028269. Published: FEB 13 2007
  27. Maslanik J, Fowler C, Stroeve J, Drobot S, Zwally J, Yi D, Emery W (2007b) A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophys Res Lett 34(24):Article Number: L24501. doi:10.1029/2007GL032043
  28. McLaren AJ, Banks HT, Durman CF, Gregory JM, Johns TC, Keen AB, Ridley JK, Roberts MJ, Lipscomb WH, Connolley WM, Laxon SW (2006) Evaluation of the sea ice simulation in a new coupled atmosphere-ocean climate model (HadGEM1). J Geophys Res 111(C12):Article Number: C12014. doi:10.1029/2005JC003033
  29. McPhee MG (1992) Turbulent heat flux in the upper ocean under sea ice. J Geophys Res 97(C4):5365–5379. doi:10.1029/92JC00239 Google Scholar
  30. Meier W, Stroeve J, Fetterer F (2007) Whither Arctic sea ice? A clear signal of decline regionally, seasonally and extending beyond the satellite record. Ann Glaciol 46:428–434. doi:10.3189/172756407782871170 CrossRefGoogle Scholar
  31. Nakićenović N, Swart R (eds) (2000) Special report on emissions scenarios. A special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  32. Notz D (2009) The future of ice sheets and sea ice: between reversible retreat and unstoppable loss. Proc Natl Acad Sci 106(49):20590–20595. doi:10.1073/pnas.0902356106 CrossRefGoogle Scholar
  33. Ogi M, Rigor IG, McPhee MG, Wallace JM (2008) Summer retreat of Arctic sea ice: role of summer winds. Geophys Res Lett 35:L24701. doi:10.1029/2008GL035672 CrossRefGoogle Scholar
  34. Overland JE (2011) Potential Arctic change through climate amplification processes. Oceanography 24:176–185CrossRefGoogle Scholar
  35. Overland J, Wang M (2010) Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 62:1–9. doi:10.1111/j.1600-0870.2009.00421.x CrossRefGoogle Scholar
  36. Overland JE, Wang M, Salo S (2008) The recent Arctic warm period. Tellus A 60:589–597. doi:10.1111/j.1600-0870.2008.00327.x CrossRefGoogle Scholar
  37. Perovich DK (2011) The changing arctic sea ice cover. Oceanography 24:162–173CrossRefGoogle Scholar
  38. Perovich DK, Grenfell TC, Richter-Menge JA, Light B, Tucker III WB, Eicken H (2003) Thin and thinner: sea ice mass balance measurements during SHEBA. J Geophys Res 108(C3):8050. doi:10.1029/2001JC001079 Google Scholar
  39. Perovich DK, Light B, Eicken H, Jones KF, Runciman K, Nghiem SV (2007) Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: attribution and role in the ice-albedo feedback. Geophys Res Lett 34:L19505. doi:10.1029/2007GL031480 CrossRefGoogle Scholar
  40. Perovich DK, Richter-Menge JA, Jones KF, Light B (2008) Sunlight, water, and ice: extreme Arctic sea ice melt during the summer of 2007. Geophys Res Lett 35:L11501. doi:10.1029/2008GL034007 CrossRefGoogle Scholar
  41. Petoukhov V, Semenov VA (2010) A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res 115. doi:10.1029/2009JD013568
  42. Polyakov IV et al (2005) One more step toward a warmer Arctic. Geophys Res Lett 32:L17605. doi:10.1029/2005GL023740 CrossRefGoogle Scholar
  43. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14). doi:10.1029/2002JD002670
  44. Schweiger A, Lindsay R, Zhang J, Steele M, Stern H, Kwok R (2011) Uncertainty in modeled Arctic sea ice volume. J. Geophys Res 116:C00D06. doi:10.1029/2011JC007084
  45. Sedlacek J, Knutti R, Martius O, Beyerle U (2011) Impact of a reduced Arctic sea-ice cover on ocean and atmospheric properties. J Clim. doi:10.1175/2011JCLI3904.1 Google Scholar
  46. Semtner AJ (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6:379–389. doi:10.1175/1520-0485 Google Scholar
  47. Semtner AJ (1984) On modelling the seasonal thermodynamic cycle of sea ice in studies of climatic change. Climatic Change 6:27–37CrossRefGoogle Scholar
  48. Serreze MC, Barrett AP, Slater AG, Steele M, Zhang J, Trenberth KE (2007) The large-scale energy budget of the Arctic. J Geophys Res 112:D11122. doi:10.1029/2006JD008230 CrossRefGoogle Scholar
  49. Shimada K, Kamoshida T, Itoh M, Nishino S, Carmack E, McLaughlin F, Zimmermann S, Proshutinsky A (2006) Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys Res Lett 33:L08605. doi:10.1029/2005GL025624 CrossRefGoogle Scholar
  50. Steele M, Zhang J, Ermold W (2010) Mechanisms of summertime upper Arctic Ocean warming and the effect on sea ice melt. J Geophys Res 115:C11004. doi:10.1029/2009JC005849 CrossRefGoogle Scholar
  51. Stott PA, Jones GS, Lowe JA, Thorne P, Durman C, Johns TC, Thelen J-C (2006) Transient climate simulations with the HadGEM1 climate model: causes of past warming and future climate change. J Clim 19:2763–2782. doi:10.1175/JCLI3731.1 CrossRefGoogle Scholar
  52. Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501. doi:10.1029/2007GL029703 CrossRefGoogle Scholar
  53. Stroeve J, Serreze M, Drobot S, Gearheard S, Holland M, Maslink J, Meier W, Scambos T (2008) Arctic sea ice extent plummets in 2007. EOS Trans 89(2):13–14Google Scholar
  54. Stroeve JC, Serreze MC, Kay JE, Holland MM, Meier WN, Barrett AP (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change 110:1005–1027. doi:10.1007/s10584-011-0101-1 CrossRefGoogle Scholar
  55. Strong C, Magnusdottir G, Stern H (2009) Observed feedback between winter sea ice and the North Atlantic Oscillation. J Clim 22:6021–6032. doi:10.1175/2009JCLI3100.1 CrossRefGoogle Scholar
  56. Thorndike AS, Rothrock DA, Maykut GA, Colony R (1975) The thickness distribution of sea ice. J Geophys Res 80(33):4501–4513CrossRefGoogle Scholar
  57. Tucker WB III, Gow AJ, Weeks WF (1987) Physical properties of summer sea ice in the fram strait. J Geophys Res 92:C7. doi:10.1029/JC092iC07p06787 CrossRefGoogle Scholar
  58. Vancoppenolle M, Fichefet T, Bitz CM (2005) On the sensitivity of undeformed Arctic sea ice to its vertical salinity profile. Geophys Res Lett 32:L16502. doi:10.1029/2005GL023427 CrossRefGoogle Scholar
  59. Wang M, Overland JE (2009) A sea ice free summer Arctic within 30 years? Geophys Res Lett 36:L07502. doi:10.1029/2009GL037820 CrossRefGoogle Scholar
  60. Wang J, Zhang J, Watanabe E, Ikeda M, Mizobata K, Walsh JE, Bai X, Wu B (2009) Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent? Geophys Res Lett 36:L05706. doi:10.1029/2008GL036706 CrossRefGoogle Scholar
  61. West AE, Keen AB, Hewitt HT (2013) Mechanisms causing reduced Arctic sea ice loss in a coupled climate model, submitted to the Cryosphere Google Scholar
  62. Wu Q, Zhang X (2010) Observed forcing feedback processes between Northern Hemisphere atmospheric circulation and Arctic sea ice coverage. J Geophys Res 115:D14119. doi:10.1029/2009JD013574 CrossRefGoogle Scholar

Copyright information

© Crown Copyright 2013

Authors and Affiliations

  • Ann B. Keen
    • 1
  • Helene T. Hewitt
    • 1
  • Jeff K. Ridley
    • 1
  1. 1.Met Office Hadley CentreExeterUK

Personalised recommendations