Climate Dynamics

, Volume 41, Issue 11–12, pp 3073–3102 | Cite as

The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations

  • Nicolas C. Jourdain
  • Alexander Sen Gupta
  • Andréa S. Taschetto
  • Caroline C. Ummenhofer
  • Aurel F. Moise
  • Karumuri Ashok


A large spread exists in both Indian and Australian average monsoon rainfall and in their interannual variations diagnosed from various observational and reanalysis products. While the multi model mean monsoon rainfall from 59 models taking part in the Coupled Model Intercomparison Project (CMIP3 and CMIP5) fall within the observational uncertainty, considerable model spread exists. Rainfall seasonality is consistent across observations and reanalyses, but most CMIP models produce either a too peaked or a too flat seasonal cycle, with CMIP5 models generally performing better than CMIP3. Considering all North-Australia rainfall, most models reproduce the observed Australian monsoon-El Niño Southern Oscillation (ENSO) teleconnection, with the strength of the relationship dependent on the strength of the simulated ENSO. However, over the Maritime Continent, the simulated monsoon-ENSO connection is generally weaker than observed, depending on the ability of each model to realistically reproduce the ENSO signature in the Warm Pool region. A large part of this bias comes from the contribution of Papua, where moisture convergence seems to be particularly affected by this SST bias. The Indian summer monsoon-ENSO relationship is affected by overly persistent ENSO events in many CMIP models. Despite significant wind anomalies in the Indian Ocean related to Indian Ocean Dipole (IOD) events, the monsoon-IOD relationship remains relatively weak both in the observations and in the CMIP models. Based on model fidelity in reproducing realistic monsoon characteristics and ENSO teleconnections, we objectively select 12 “best” models to analyze projections in the rcp8.5 scenario. Eleven of these models are from the CMIP5 ensemble. In India and Australia, most of these models produce 5–20 % more monsoon rainfall over the second half of the twentieth century than during the late nineteenth century. By contrast, there is no clear model consensus over the Maritime Continent.


Indian monsoon Australian monsoon Maritime Continent Papuan rainfall Indonesian rainfall ENSO IOD CMIP5 CMIP3 Monsoon projection 



This study was conducted in the context of the ARC project DP110100601. KA acknowledges Prof. B.N. Goswami, Director of IITM for his support and encouragement. CCCR/IITM is fully funded by the MoES, Govt of India. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (Table 3, 4) for producing and making available their model output. The U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison (PCMDI) provided coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We thank the Australian National Computational Infrastructure (NCI) for help in the download process. We acknowledge all the Institutions listed in Table 2 for having made their observations and reanalyses accessible to us.


  1. Adler R, Huffman G, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D et al (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4(6):1147–1167CrossRefGoogle Scholar
  2. Adler RF, Huffman GJ, Bolvin DT, Curtis S, Nelkin EJ (2000) Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information. J Appl Meteorol 39(12):2007–2023CrossRefGoogle Scholar
  3. Ajayamohan RS, Rao SA, Yamagata T (2008) Influence of Indian Ocean dipole on poleward propagation of boreal summer intraseasonal oscillations. J Clim 21(21):5437–5454CrossRefGoogle Scholar
  4. Annamalai H, Xie SP, McCreary JP, Murtugudde R (2005) Impact of Indian Ocean sea surface temperature on developing El Niño. J Clim 18(2):302–319CrossRefGoogle Scholar
  5. Arora VK, Scinocca JF, Boer GJ, Christian JR, Denman KL, Flato GM, Kharin VV, Lee WG, Merryfield WJ (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38(5):L05805CrossRefGoogle Scholar
  6. Ashok K, Guan Z, Saji NH, Yamagata T (2004) Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J Clim 17(16):3141–3155CrossRefGoogle Scholar
  7. Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 28(23):4499–4502CrossRefGoogle Scholar
  8. Ashok K, Guan Z, Yamagata T (2003) A look at the relationship between the ENSO and the Indian Ocean Dipole. J Meteorol Soc Japan 81(1):41–56CrossRefGoogle Scholar
  9. Behera SK, Krishnan R, Yamagata T (1999) Unusual ocean–atmosphere conditions in the tropical Indian Ocean during 1994. Geophys Res Lett 26(19):3001–3004CrossRefGoogle Scholar
  10. Behera SK, Luo JJ, Masson S, Rao SA, Sakuma H, Yamagata T (2006) A CGCM study on the interaction between IOD and ENSO. J Clim 19(9):1688–1705CrossRefGoogle Scholar
  11. BOM (2010) Operational implementation of the ACCESS numerical weather prediction system. NMOC Operations Bulletin No.83. Technical report, Bureau of Meteorology (BOM)Google Scholar
  12. Boos WR, Kuang Z (2010) Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463(7278):218–222CrossRefGoogle Scholar
  13. Bosilovich MG, Chen J, Robertson FR, Adler RF (2008) Evaluation of global precipitation in reanalyses. J Appl Meteorol Climatol 47(9):2279–2299CrossRefGoogle Scholar
  14. Burgers G (1999) The El Niño stochastic oscillator. Clim Dyn 15(7):521–531CrossRefGoogle Scholar
  15. Cai W, Hendon HH, Meyers G (2005) Rainfall teleconnections with Indo-Pacific variability in the WCRP CMIP3 models. J Clim 18:1449–1468CrossRefGoogle Scholar
  16. Cai W, Sullivan A, Cowan T (2009) Rainfall teleconnections with Indo-Pacific variability in the WCRP CMIP3 models. J Clim 22:5046–5070CrossRefGoogle Scholar
  17. Cai W, Sullivan A, Cowan T (2011) Interactions of ENSO, the IOD, and the SAM in CMIP3 models. J Clim 24(6):1688–1704CrossRefGoogle Scholar
  18. Chao W, Chen B (2001) The origin of monsoons. J Atmos Sci 58(22):3497–3507CrossRefGoogle Scholar
  19. Chung C, Ramanathan V (2006) Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J Clim 19(10):2036–2045CrossRefGoogle Scholar
  20. Collins M, Tett S, Cooper C (2001) The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 17(1):61–81CrossRefGoogle Scholar
  21. Collins W, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones C, Joshi M, Liddicoat S et al (2011) Development and evaluation of an Earth-system model–HadGEM2. Geosci Model Dev Discuss 4:997–1062CrossRefGoogle Scholar
  22. Collins W, Bitz C, Blackmon M, Bonan G, Bretherton C, Carton J, Chang P, Doney S, Hack J, Henderson T et al (2006). The community climate system model version 3 (CCSM3). J Clim 19(11):2122–2143CrossRefGoogle Scholar
  23. Colman RA, Moise AF, Hanson LI (2011) Tropical Australian climate and the Australian monsoon as simulated by 23 CMIP3 models. J Geophys Res 116(D10):D10116CrossRefGoogle Scholar
  24. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597CrossRefGoogle Scholar
  25. Delworth T, Broccoli A, Rosati A, Stouffer R, Balaji V, Beesley J, Cooke W et al (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19(5):643–674CrossRefGoogle Scholar
  26. Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, Golaz JC et al (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3. J Clim 24(13):3484–3519CrossRefGoogle Scholar
  27. Dufresne J-L, Foujols M-A, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y et al (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn. doi: 10.1007/s00382-012-1636-1
  28. Furevik T, Bentsen M, Drange H, Kindem IKT, Kvamstø NG, Sorteberg A (2003) Description and evaluation of the Bergen climate model: ARPEGE coupled with MICOM. Clim Dyn 21(1):27–51CrossRefGoogle Scholar
  29. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM et al (2011) The community climate system model version 4. J Clim 24:4973–4991CrossRefGoogle Scholar
  30. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16(2):147–168CrossRefGoogle Scholar
  31. Gordon HB, Rotstayn LD, McGregor JL, Dix MR, Kowalczyk EA, O’Farrell SP (2002) The CSIRO Mk3 climate system model, CSIRO atmospheric research technical paper no. 60. Technical report, Commonwealth Scientific and Industrial Research Organisation, AustraliaGoogle Scholar
  32. Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314(5804):1442–1445CrossRefGoogle Scholar
  33. Gualdi S, Scoccimarro E, Navarra A (2008) Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model. J Clim 21(20):5204–5228CrossRefGoogle Scholar
  34. Guilyardi E, Braconnot P, Jin FF, Kim ST, Kolasinski M, Li T, Musat I (2009a) Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J Clim 22(21):5698–5718CrossRefGoogle Scholar
  35. Guilyardi E, Delecluse P, Gualdi S, Navarra A (2003) Mechanisms for ENSO phase change in a coupled GCM. J Clim 16(8):1141–1158CrossRefGoogle Scholar
  36. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, Van Oldenborgh G, Stockdale T (2009b) Understanding El Niño in ocean—atmosphere general circulation models. Bull Am Meteorol Soc 90:325–340CrossRefGoogle Scholar
  37. Haylock M, McBride J (2001) Spatial coherence and predictability of Indonesian wet season rainfall. J Clim 14(18):3882–3887CrossRefGoogle Scholar
  38. Hazeleger W, Severijns C, Semmler T, Éireann M, Ştefănescu S, Yang S, Wang X, Wyser K, Dutra E (2010) EC-Earth: a seamless earth system prediction approach in action. Bull Am Meteorol Soc 91:1357–1363CrossRefGoogle Scholar
  39. Hendon HH (2003) Indonesian rainfall variability: impacts of ENSO and local air-sea interaction. J Clim 16(11):1775–1790CrossRefGoogle Scholar
  40. Holland GJ (1986) Interannual variability of the Australian summer monsoon at Darwin: 1952–82. Mon Weather Rev 114(3):594–604CrossRefGoogle Scholar
  41. Iversen T, Bentsen M, Bethke I, Debernard J, Kirkevåg A, Seland Ø, Drange H, Kristjánsson JE, Medhaug I, Sand M et al (2012) The Norwegian Earth System Model, NorESM1-M—Part 2: climate response and scenario projections. Geosci Model Dev Discuss 5:2933–2998CrossRefGoogle Scholar
  42. Izumo T, Lengaigne M, Vialard J, Luo J-J, Yamagata T, Madec G (2013) Influence of the Indian Ocean Dipole and Pacific recharge on the following year El Niño: interdecadal robustness. Clim Dyn. doi: 10.1007/s00382-012-1628-1
  43. Izumo T, Montégut C, Luo J, Behera S, Masson S, Yamagata T (2008) The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J Clim 21(21):5603–5623CrossRefGoogle Scholar
  44. Johns T, Durman C, Banks H, Roberts M, McLaren A, Ridley J, Senior C, Williams K, Jones A, Keen A et al (2004) HadGEM1—model description and analysis of preliminary experiments for the IPCC fourth assessment report. Hadley Centre Technical Note, 55Google Scholar
  45. Jones D, Wang W, Fawcett R (2009) High-quality spatial climate data-sets for Australia. Aust Meteorol Oceanogr J 58(4):233Google Scholar
  46. Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19(16):3952–3972CrossRefGoogle Scholar
  47. K-1 model developers (2004) K-1 coupled model (MIROC) description, technical report 1. Technical report, Center for Climate System Research, University of TokyoGoogle Scholar
  48. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–472CrossRefGoogle Scholar
  49. Kim SJ, Flato G, Boer G, McFarlane N (2002) A coupled climate model simulation of the Last Glacial Maximum, Part 1: transient multi-decadal response. Clim Dyn 19(5):515–537Google Scholar
  50. Kim ST, Yu J-Y (2012) The two types of ENSO in CMIP5 models. Geophys Res Lett 39:L11704Google Scholar
  51. Krishna Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Nino. Science 314(5796):115–119CrossRefGoogle Scholar
  52. Krishnan R, Sabin TP, Ayantika DC, Kitoh A, Sugi M, Murakami H, Turner AG, Slingo JM, Rajendran K (2012) Will the South Asian monsoon overturning circulation stabilize any further? Clim Dyn 40(1–2):187–211Google Scholar
  53. Lau K-M, Chan PH (1983) Short-term climate variability and atmospheric teleconnections from satellite-observed outgoing longwave radiation. Part I: simultaneous relationships. J Atmos Sci 40:2735–2750CrossRefGoogle Scholar
  54. Li Y, Jourdain NC, Taschetto AS, Ummenhofer CC, Ashok K, Sen Gupta A (2012) Evaluation of monsoon seasonality and the tropospheric biennial oscillation transitions in the CMIP models. Geophys Res Lett 39:L20713. doi: 10.1029/2012GL053322
  55. Liu X, Yanai M (2001) Relationship between the Indian monsoon rainfall and the tropospheric temperature over the Eurasian continent. Q J R Meteorol Soc 127(573):909–937CrossRefGoogle Scholar
  56. Lucarini V, Russell GL (2002) Comparison of mean climate trends in the northern hemisphere between National Centers for Environmental Prediction and two atmosphere-ocean model forced runs. J Geophys Res 107(D15):1–13Google Scholar
  57. Luo JJ, Zhang R, Behera SK, Masumoto Y, Jin FF, Lukas R, Yamagata T (2010) Interaction between El Nino and extreme Indian Ocean dipole. J Clim 23(3):726–742CrossRefGoogle Scholar
  58. Marti O, Braconnot P, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P et al (2005) The new IPSL climate system model: IPSL-CM4, Note du Pôle de Modélisation, IPSL 26. Technical report, Institut Pierre Simon Laplace, FranceGoogle Scholar
  59. Martin GM, Bellouin N, Collins WJ, Culverwell ID, Halloran PR, Hardiman SC, Hinton TJ et al (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev Discuss 4:765–841CrossRefGoogle Scholar
  60. McBride JL, Haylock MR, Nicholls N. (2003) Relationships between the Maritime Continent heat source and the El Niño-Southern Oscillation phenomenon. J Clim 16(17):2905–2914CrossRefGoogle Scholar
  61. McBride JL, Nicholls N (1983) Seasonal relationships between Australian rainfall and the Southern Oscillation. Mon Weather Rev 111(1998):2004Google Scholar
  62. Meehl GA (1997) The south Asian monsoon and the tropospheric biennial oscillation. J Clim 10(8):1921–1943CrossRefGoogle Scholar
  63. Meehl GA, Arblaster JM (2002) The tropospheric biennial oscillation and Asian-Australian monsoon rainfall. J Clim 15(7):722–744CrossRefGoogle Scholar
  64. Meehl GA, Stocker TF, Collins W, Friedlingstein P, Gaye A, Gregory J et al (2007) Chapter 10: global climate projections. In: Climate change 2007: the physical science basis. Contribution of working Group I to the fourth assessment report of the intergovernmental panel on climate changeGoogle Scholar
  65. Min SK, Hense A (2006) A Bayesian assessment of climate change using multimodel ensembles. Part I: global mean surface temperature. J Clim 19(13):3237–3256CrossRefGoogle Scholar
  66. Mishra V, Smoliak BV, Lettenmaier DP, Wallace JM (2012) A prominent pattern of year-to-year variability in Indian Summer Monsoon Rainfall. Proc Natl Acad Sci USA 109(19):7213–7217Google Scholar
  67. Moise AF, Colman RA, Brown JR (2012) Behind uncertainties in projections of Australian tropical climate: analysis of 19 CMIP3 models. J Geophys Res 117(D10):D10103CrossRefGoogle Scholar
  68. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756CrossRefGoogle Scholar
  69. Neale R, Slingo J (2003) The maritime continent and its role in the global climate: a GCM study. J Clim 16(5):834–848CrossRefGoogle Scholar
  70. Onogi K, Tsutsui J, Koide H, Sakamato M, Kobayashi S, Hatsushika H, Matsumoto T et al (2007) The JRA-25 reanalysis. J Meteorol Soc Japan 85(3):369–432CrossRefGoogle Scholar
  71. Raddatz T, Reick C, Knorr W, Kattge J, Roeckner E, Schnur R, Schnitzler K, Wetzel P, Jungclaus J (2007) Will the tropical land biosphere dominate the climate—carbon cycle feedback during the twenty-first century? Clim Dyn 29(6):565–574CrossRefGoogle Scholar
  72. Rajendran K, Kitoh A, Srinivasan J, Mizuta R, Krishnan R (2012) Monsoon circulation interaction with Western Ghats orography under changing climate. Theor Appl Climatol 110(4):555–571Google Scholar
  73. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V et al (2007) Cilmate models and their evaluation. In: Climate change 2007: the physical science basis. Contribution of working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  74. Ratnam JV, Behera SK, Masumoto Y, Takahashi K, Yamagata T (2010) Pacific Ocean origin for the 2009 Indian summer monsoon failure. Geophys Res Lett 37(7):L07807CrossRefGoogle Scholar
  75. Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicek M, Ansell TJ, Tett SFB (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J Clim 19(3):446–469CrossRefGoogle Scholar
  76. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407CrossRefGoogle Scholar
  77. Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5 A scenario of comparatively high greenhouse gas emissions. Clim Change 109(1):33–57Google Scholar
  78. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648CrossRefGoogle Scholar
  79. Risbey JS, Pook MJ, McIntosh PC, Wheeler MC, Hendon HH (2009) On the remote drivers of rainfall variability in Australia. Mon Weather Rev 137(10):3233–3253CrossRefGoogle Scholar
  80. Rotstayn LD, Collier MA, Dix MR, Feng Y, Gordon HB, O’Farrell SP, Smith IN, Syktus J (2010) Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment. Int J Climatol 30(7):1067–1088Google Scholar
  81. Rotstayn LD, Jeffrey SJ, Collier MA, Dravitzki SM, Hirst AC, Syktus JI, Wong KK (2012) Aerosol-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys Discuss 12:6377–6404CrossRefGoogle Scholar
  82. Roxy M, Patil N, Ashok K (2013) Indian summer monsoon-ENSO links in the IPCC AR4 projections: a cautionary outlook. Submitted to Global Planet. ChangeGoogle Scholar
  83. Rudolf B, Becker A, Schneider U, Meyer-Christoffer A, Ziese M (2011) New GPCC Full Data Reanalysis Version 5 Provides High-Quality Gridded Monthly Precipitation Data. Technical report, Global Precipitation Climatology Centre, Offenbach, GermanyGoogle Scholar
  84. Saha S, Moorthi S, Pan H, Wu X, Wang J, Nadiga S, Tripp P et al. (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1057CrossRefGoogle Scholar
  85. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401(6751):360–363Google Scholar
  86. Saji NH, Yamagata T (2003) Possible impacts of Indian Ocean dipole mode events on global climate. Clim Res 25(2):151–169CrossRefGoogle Scholar
  87. Salas-Mélia D, Chauvin F, Déqué M, Douville H, Gueremy J, Marquet P, Planton S, Royer JF, Tyteca S (2005) Description and validation of the CNRM-CM3 global coupled model, Note 103. Technical report, Centre National de Recherche MétéorologiqueGoogle Scholar
  88. Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y et al. (2006) Present-day atmospheric simulations using GISS ModelE: comparison to in situ, satellite, and reanalysis data. J Clim 19(2):153–192CrossRefGoogle Scholar
  89. Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Giuseppe Fogli P, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J Clim 24(16):4368–4384CrossRefGoogle Scholar
  90. Shi G, Ribbe J, Cai W, Cowan T (2008) An interpretation of Australian rainfall projections. Geophys Res Lett 35:L02702CrossRefGoogle Scholar
  91. Smith I (2004) An assessment of recent trends in Australian rainfall. Aust Meteorol Mag 53(3):163–173Google Scholar
  92. Smith IN, Moise AF, Colman RA (2012) Large-scale circulation features in the tropical western Pacific and their representation in climate models. J Geophys Res 117(D4):D04109CrossRefGoogle Scholar
  93. Taschetto AS, England MH (2009) El Nino Modoki impacts on Australian rainfall. J Clim 22(11):3167–3174CrossRefGoogle Scholar
  94. Taschetto AS, Sen Gupta A, Hendon HH, Ummenhofer CC, England MH (2011) The contribution of Indian Ocean sea surface temperature Anomalies on Australian summer rainfall during El Niño events. J Clim 24:3734–3747CrossRefGoogle Scholar
  95. Taschetto AS, Sen Gupta A, Jourdain NC, Agus Santoso A, Ummenhofer CC, England MH (2013) Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections. Submitted to J ClimGoogle Scholar
  96. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192CrossRefGoogle Scholar
  97. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498Google Scholar
  98. Ummenhofer CC, England MH, McIntosh PC, Meyers GA, Pook MJ, Risbey JS, Gupta AS, Taschetto AS (2009). What causes southeast Australia’s worst droughts? Geophys Res Lett 36(4):L04706CrossRefGoogle Scholar
  99. Ummenhofer CC, Sen Gupta A, Li Y, Taschetto AS, England, MH (2011) Multi-decadal modulation of the El Nino–Indian monsoon relationship by Indian Ocean variability. Environ Res Lett 6:034006CrossRefGoogle Scholar
  100. Ummenhofer CC, Sen Gupta A, Pook MJ, England MH (2008) Anomalous rainfall over southwest Western Australia forced by Indian Ocean sea surface temperatures. J Clim 21(19):5113–5134CrossRefGoogle Scholar
  101. Vertenstein M, Craig T, Middleton A, Feddema D, Fischer C (2012) CESM-1.0.4 User’s guide. Technical report, Community Earth System Model, NCAR, USAGoogle Scholar
  102. Voldoire A, Sanchez-Gomez E, y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M et al (2013) The CNRM-CM5. 1 global climate model: description and basic evaluation. Clim Dyn. doi: 10.1007/s00382-011-1259-y
  103. Volodin EM, Dianskii NA, Gusev AV (2010) Simulating present-day climate with the INMCM4. 0 coupled model of the atmospheric and oceanic general circulations. Izvestiya Atmos Ocean Phys 46(4):414–431CrossRefGoogle Scholar
  104. Volodin EM, Diansky NA (2004) El-Niño reproduction in coupled general circulation model of atmosphere and ocean. Russ Meteorol Hydrol 12:5–14Google Scholar
  105. Von Storch H, Zwiers F (2002) Statistical analysis in climate research. Cambridge University Press, CambridgeGoogle Scholar
  106. Wang G, Hendon HH (2007) Sensitivity of Australian rainfall to inter-El Nino variations. J Clim 20(16):4211–4226CrossRefGoogle Scholar
  107. Washington WM, Weatherly JW, Meehl GA, Semtner Jr AJ, Bettge TW, Craig AP, Strand Jr WG et al (2000) Parallel climate model (PCM) control and transient simulations. Clim Dyn 16(10):755–774CrossRefGoogle Scholar
  108. Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23(23):6312–6335CrossRefGoogle Scholar
  109. Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T et al (2011) MIROC-ESM: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev Discuss 4:1063–1128CrossRefGoogle Scholar
  110. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78(11):2539–2558CrossRefGoogle Scholar
  111. Yamagata T, Behera SK, Rao SA, Guan Z, Ashok K, Saji HN (2003) Comments on “Dipoles, temperature gradients, and tropical climate anomalies". Bull Am Meteorol Soc 84(10):1418–1422CrossRefGoogle Scholar
  112. Yano JI, McBride JL (1998) An aquaplanet monsoon. J Atmos Sci 55(8):1373–1399CrossRefGoogle Scholar
  113. Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteorol Soc 93(9):1401–1415Google Scholar
  114. Yin X, Gruber A, Arkin P (2004) Comparison of the GPCP and CMAP merged gauge-satellite monthly precipitation products for the period 1979–2001. J Hydrometeorol 5(6):1207–1222CrossRefGoogle Scholar
  115. Yongqiang Y, Xuehong Z, Yufu G (2004) Global coupled ocean–atmosphere general circulation models in LASG/IAP. Atm Atmos Sci 21(3):444–455CrossRefGoogle Scholar
  116. Yu JY, Kim ST (2010) Identification of Central-Pacific and Eastern-Pacific types of ENSO in CMIP3 models. Geophys Res Lett 37:L15705Google Scholar
  117. Yukimoto S, Noda A, Kitoh A, Sugi M, Kitamura Y, Hosaka M, Shibata K, Maeda S, Uchiyama T (2001) The new Meteorological Research Institute coupled GCM(MRI-CGCM 2)—model climate and variability. Pap Meteorol Geophys 51(2):47–88CrossRefGoogle Scholar
  118. Zhang H, Liang P, Moise A, Hanson L (2012) Diagnosing potential changes in Asian summer monsoon onset and duration in IPCC AR4 model simulations using moisture and wind indices. Clim Dyn 39(9–10):2465–2486Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nicolas C. Jourdain
    • 1
  • Alexander Sen Gupta
    • 1
    • 2
  • Andréa S. Taschetto
    • 1
    • 2
  • Caroline C. Ummenhofer
    • 3
  • Aurel F. Moise
    • 4
  • Karumuri Ashok
    • 5
  1. 1.Climate Change Research CentreUniversity of New South WalesSydneyAustralia
  2. 2.ARC Centre of Excellence for Climate System ScienceUniversity of New South WalesSydneyAustralia
  3. 3.Department of Physical OceanographyWoods Hole Oceanographic InstitutionWoods HoleUSA
  4. 4.Centre for Australian Weather and Climate ResearchBureau of MeteorologyMelbourneAustralia
  5. 5.Centre for Climate Change ResearchIndian Institute of Tropical MeteorologyPuneIndia

Personalised recommendations