Climate Dynamics

, Volume 42, Issue 3–4, pp 771–785 | Cite as

Spring-summer temperatures since AD 1780 reconstructed from stable oxygen isotope ratios in white spruce tree-rings from the Mackenzie Delta, northwestern Canada

  • Trevor J. Porter
  • Michael F. J. Pisaric
  • Robert D. Field
  • Steven V. Kokelj
  • Thomas W. D. Edwards
  • Peter deMontigny
  • Richard Healy
  • Allegra N. LeGrande


High-latitude δ18O archives deriving from meteoric water (e.g., tree-rings and ice-cores) can provide valuable information on past temperature variability, but stationarity of temperature signals in these archives depends on the stability of moisture source/trajectory and precipitation seasonality, both of which can be affected by atmospheric circulation changes. A tree-ring δ18O record (AD 1780–2003) from the Mackenzie Delta is evaluated as a temperature proxy based on linear regression diagnostics. The primary source of moisture for this region is the North Pacific and, thus, North Pacific atmospheric circulation variability could potentially affect the tree-ring δ18O-temperature signal. Over the instrumental period (AD 1892–2003), tree-ring δ18O explained 29 % of interannual variability in April–July minimum temperatures, and the explained variability increases substantially at lower-frequencies. A split-period calibration/verification analysis found the δ18O-temperature relation was time-stable, which supported a temperature reconstruction back to AD 1780. The stability of the δ18O-temperature signal indirectly implies the study region is insensitive to North Pacific circulation effects, since North Pacific circulation was not constant over the calibration period. Simulations from the NASA-GISS ModelE isotope-enabled general circulation model confirm that meteoric δ18O and precipitation seasonality in the study region are likely insensitive to North Pacific circulation effects, highlighting the paleoclimatic value of tree-ring and possibly other δ18O records from this region. Our δ18O-based temperature reconstruction is the first of its kind in northwestern North America, and one of few worldwide, and provides a long-term context for evaluating recent climate warming in the Mackenzie Delta region.


Mackenzie Delta White spruce tree-rings Stable oxygen isotope ratios Atmospheric circulation Temperature reconstruction NASA-GISS ModelE 



Financial support for this project is gratefully acknowledged: Aboriginal Affairs and Northern Development Canada grant; NSERC Discovery grant and Northern Supplement (M. Pisaric); Northern Scientific Training Program (T. Porter); NSERC Postgraduate Scholarship (T. Porter). Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. We also thank two anonymous reviewers for their helpful comments which improved the final manuscript.

Supplementary material

382_2013_1674_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1180 kb)


  1. Anchukaitis K, D’Arrigo R, Andreu-Hayles L et al (2012) Tree-ring reconstructed summer temperatures from northwestern North America during the last nine centuries. J Clim. doi: 10.1175/JCLI-D-11-00139.1
  2. Anderson L, Abbott MB, Finney BP, Burns SJ (2005) Regional atmospheric circulation change in the North Pacific during the Holocene inferred from lacustrine carbonate oxygen isotopes, Yukon Territory, Canada. Quat Res 64:21–35CrossRefGoogle Scholar
  3. Andreu-Hayles L, D’Arrigo R, Anchukaitis KJ, Beck PSA, Frank D, Goetz S (2011) Varying boreal forest response to Arctic environmental change at the Firth River, Alaska. Environ Res Lett 6. doi: 10.1088/1748-9326/6/4/045503
  4. Augustin L, Barbante C, Barnes PRF et al (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628CrossRefGoogle Scholar
  5. Ballantyne AP, Rybczynski N, Baker PA, Harringtion CR, White D (2006) Pliocene Arctic temperature constraints from the growth rings and isotopic composition of fossil larch. Palaeogeogr Palaeoclimatol Palaeoecol 242:188–200CrossRefGoogle Scholar
  6. Ballantyne AP, Greenwood DR, Sinninghe-Damsté JS, Csank AZ, Eberle JJ, Rybczynski N (2010) Significantly warmer Arctic surface temperatures during the Pliocene indicated by multiple independent proxies. Geology 38:603–606CrossRefGoogle Scholar
  7. Barber VA, Juday GP, Finney BP (2000) Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–673CrossRefGoogle Scholar
  8. Barber VA, Juday GP, Finney BP, Wilmking M (2004) Reconstruction of summer temperatures in interior Alaska from tree-ring proxies: evidence for changing synoptic climate regimes. Clim Chang 63:91–120CrossRefGoogle Scholar
  9. Barbour MM, Andrews TJ, Farquhar GD (2001) Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world. Aust J Plant Physiol 28:335–348Google Scholar
  10. Bard E, Raisbeck G, Yiou F, Jouzel J (2000) Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B 52:985–992CrossRefGoogle Scholar
  11. Bégin C, Michaud Y, Archambault S (2000) Tree-ring evidence of recent climate changes in the Mackenzie Basin, Northwest Territories. Geological Survey of Canada Bulletin 547:65–77Google Scholar
  12. Berkelhammer M, Stott LD (2012) Secular temperature trends for the southern Rocky Mountains over the last five centuries. Geophys Res Lett 39. doi: 10.1029/2012GL052447
  13. Birks SJ, Edwards TWD (2009) Atmospheric circulation controls on precipitation isotope-climate relations in western Canada. Tellus B 61:566–576CrossRefGoogle Scholar
  14. Boettger T, Haupt M, Knöller K et al (2007) Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O, and nonexchangeable δ2H values in cellulose, sugar, and starch: an interlaboratory comparison. Anal Chem 79:4603–4612CrossRefGoogle Scholar
  15. Bowen GJ, Revenaugh J (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res 39. doi: 10.1029/2003WR002086
  16. Bradley RS (2011) High-resolution paleoclimatology. In: Hughes MK, Swetnam TW, Diaz H (eds) Dendroclimatology: progress and prospects. Springer, New York, pp 3–15CrossRefGoogle Scholar
  17. Brendel O, Iannetta PPM, Stewart D (2000) A rapid and simple method to isolate pure alpha-cellulose. Phytochem Anal 11:7–10CrossRefGoogle Scholar
  18. Briffa KR (2000) Annual climate variability in the Holocene: interpreting the message of ancient trees. Quat Sci Rev 19:87–105CrossRefGoogle Scholar
  19. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA (1998) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–682CrossRefGoogle Scholar
  20. Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG, Vaganov EA (2002) Tree-ring width and density data around the Northern Hemisphere: part 1, local and regional climate signals. Holocene 12:737–757CrossRefGoogle Scholar
  21. Büntgen U, Tegel W, Nicolussi K et al (2011) 2500 years of European climate variability and human susceptibility. Science 331:578–582CrossRefGoogle Scholar
  22. Burn CR (1997) Cryostratigraphy, paleogeography, and climate change during the early Holocene warm interval, western Arctic coast, Canada. Can J Earth Sci 34:912–925CrossRefGoogle Scholar
  23. Burns BM (1973) The climate of the Mackenzie Valley-Beaufort Sea. Environment Canada, TorontoGoogle Scholar
  24. Compo GP, Whitaker JS, Sardeshmukh PD et al (2011) The Twentieth Century Reanalysis Project. Q J Royal Meteorol Soc 137:1–28CrossRefGoogle Scholar
  25. Cook ER (1985) A time series analysis approach to tree ring standardization. PhD dissertation. University of Arizona, TusconGoogle Scholar
  26. Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, BostonCrossRefGoogle Scholar
  27. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 41:45–53Google Scholar
  28. Csank AZ, Patterson WP, Eglington BM, Rybczynski N, Basinger JF (2011) Climate variability in the Early Pliocene Arctic: annually resolved evidence from stable isotope values of sub-fossil wood, Ellesmere Island, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 308:339–349CrossRefGoogle Scholar
  29. Cullen LE, Grierson PF (2007) A stable oxygen, but not carbon, isotope chronology of Callitris columellaris reflects recent climate change in north-western Australia. Clim Chang 85:213–229CrossRefGoogle Scholar
  30. D’Arrigo R, Kaufmann RK, Davi N et al (2004) Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Glob Biogeochem Cycles 18. doi: 10.1029/2004GB002249
  31. D’Arrigo R, Wilson R, Deser C et al (2005) Tropical-North Pacific climate linkages over the past four centuries. J Clim 18:5253–5265CrossRefGoogle Scholar
  32. D’Arrigo R, Wilson R, Jacoby G (2006) On the long-term context for late twentieth century warming. J Geophys Res 111. doi: 10.1029/2005JD006352
  33. D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the “Divergence Problem” in northern forests: a review of the tree-ring evidence and possible causes. Glob Planet Chang 60:289–305CrossRefGoogle Scholar
  34. D’Arrigo R, Jacoby G, Buckley B et al (2009) Tree growth and inferred temperature variability at the North American arctic treeline. Glob Planet Chang 65:71–82CrossRefGoogle Scholar
  35. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  36. Dansgaard W, Johnsen SJ, Gundestrup NS et al (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220CrossRefGoogle Scholar
  37. Davi NK, Jacoby GC, Wiles GC (2003) Boreal temperature variability inferred from maximum latewood density and tree-ring width data, Wrangell Mountain region, Alaska. Quat Res 60:252–262CrossRefGoogle Scholar
  38. Dyke LD (2000) Climate of the Mackenzie River valley. In: Dyke LD, Brooks GR (eds) The physical environment of the Mackenzie Valley, Northwest territories: a baseline for the assessment of environmental change. Geological Survey of Canada, OttawaGoogle Scholar
  39. Edwards TWD, Wolfe BB, MacDonald GM (1996) Influence of changing atmospheric circulation on precipitation δ18O-temperature relations in Canada during the Holocene. Quat Res 46:211–218CrossRefGoogle Scholar
  40. Edwards TWD, Birks SJ, Luckman BH, MacDonald GM (2008) Climatic and hydrologic variability during the past millennium in the eastern Rocky Mountains and northern Great Plains of western Canada. Quat Res 70:188–197CrossRefGoogle Scholar
  41. Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253CrossRefGoogle Scholar
  42. Esper J, Frank D, Büntgen U, Verstege A, Hantemirov RM, Kirdyanov AV (2010) Trends and uncertainties in Siberian indicators of 20th century warming. Glob Chang Biol 16:386–398CrossRefGoogle Scholar
  43. Field RD (2010) Observed and modeled controls on precipitation δ18O over Europe: From local temperature to the Northern Annular Mode. J Geophys Res 115. doi: 10.1029/2009JD013370
  44. Field RD, Moore GWK, Holdsworth G, Schmidt GA (2010) A GCM-based analysis of circulation controls on δ18O in the southwest Yukon, Canada: Implications for climate reconstructions in the region. Geophys Res Lett 37. doi: 10.1029/2009GL041408
  45. Fisher DA, Wake C, Kreutz K et al (2004) Stable isotope records from Mount Logan, Eclipse ice cores and nearby Jellybean Lake. Water cycle of the North Pacific over 2000 years and over five vertical kilometers: sudden shifts and tropical teleconnections. Géog Phys Quatern 58:337–352Google Scholar
  46. Fricke HC, O’Neil JR (1999) The correlation between 18O/16O ratios of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time. Earth Planet Sci Lett 170:181–196CrossRefGoogle Scholar
  47. Gagen M, McCarroll D, Edouard J-L (2006) Combining ring width, density and stable carbon isotope proxies to enhance the climate signal in tree-rings: an example from the Southern French Alps. Clim Chang 78:363–379CrossRefGoogle Scholar
  48. Gagen M, McCarroll D, Loader NJ, Robertson I (2011) Stable isotopes in dendroclimatology: moving beyond “potential”. In: Hughes MK, Swetnam TW, Diaz HF (eds) Dendroclimatology: progress and prospects. Springer, New York, pp 147–172CrossRefGoogle Scholar
  49. Gao C, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J Geophys Res 113. doi: 10.1029/2008JD010239
  50. Garfinkel HL, Brubaker LB (1980) Modern climate-tree-growth relationships and climatic reconstruction in sub-Arctic Alaska. Nature 286:872–874CrossRefGoogle Scholar
  51. Gaudinski JB, Dawson TE, Quideau S et al (2005) Comparative analysis of cellulose preparation techniques for use with 13C, 14C, and 18O isotopic measurements. Anal Chem 77:7212–7224CrossRefGoogle Scholar
  52. Gray J, Thompson P (1976) Climatic information from 18O/16O ratios of cellulose in tree rings. Nature 262:481–482CrossRefGoogle Scholar
  53. Green JW (1963) Wood cellulose. In: Whistler RL (ed) Methods in carbohydrate chemistry, III. Academic Press, New York, pp 9–21Google Scholar
  54. Hammarlund D, Barnekow L, Birks HJB, Buchardt B, Edwards TWD (2002) Holocene changes in atmospheric circulation recorded in the oxygen-isotope stratigraphy of lacustrine carbonates from northern Sweden. Holocene 12:339–351CrossRefGoogle Scholar
  55. Hilasvuori E, Berninger F, Sonninen E, Tuomenvirta H, Jungner H (2009) Stability of climate signal in carbon and oxygen isotope records and ring width from Scots pine (Pinus sylvestris L.) in Finland. J Quat Sci 24:469–480CrossRefGoogle Scholar
  56. Holdsworth G, Krouse HR, Nosal M (1992) Ice core climate signals from Mount Logan, Yukon, A.D. 1700–1987. In: Bradley RS, Jones PD (eds) Climate since A.D. 1500. Routledge, London, pp 483–504Google Scholar
  57. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  58. Holzkämper S, Tillman PK, Kuhry P, Esper J (2012) Comparison of stable carbon and oxygen isotopes in Picea glauca tree rings and Sphagnum fuscum moss remains from subarctic Canada. Quat Res 78:295–302CrossRefGoogle Scholar
  59. Hughes MK (2011) Dendroclimatology in high-resolution paleoclimatology. In: Hughes MK, Swetnam TW, Diaz HF (eds) Dendroclimatology: progress and prospects. Springer, New York, pp 17–34CrossRefGoogle Scholar
  60. Jacoby GC, D’Arrigo R (1989) Reconstructed northern hemisphere annual temperature since 1671 based on high-latitude tree-ring data from North America. Clim Chang 14:39–59CrossRefGoogle Scholar
  61. Jacoby GC, D’Arrigo RD (1995) Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochem Cycles 9:227–234CrossRefGoogle Scholar
  62. Jansen E, Overpeck J, Briffa KR et al (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 433–497Google Scholar
  63. Johnsen SJ, Dahl-Jensen D, Gundestrup N et al (2001) Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J Quat Sci 16:299–307CrossRefGoogle Scholar
  64. Jones PD, Briffa KR, Osborn TJ et al (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49CrossRefGoogle Scholar
  65. Jouzel J (1999) Calibrating the isotopic paleothermometer. Science 286:910–911CrossRefGoogle Scholar
  66. Jouzel J, Lorius C, Petit JR et al (1987) Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329:403–408CrossRefGoogle Scholar
  67. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  68. Kaufman DS, Schneider DP, McKay NP et al (2009) Recent warming reverses long-term Arctic cooling. Science 325:1236–1239CrossRefGoogle Scholar
  69. Kokelj SV, Burn CR (2005) Near-surface ground ice in sediments of the Mackenzie Delta, Northwest Territories, Canada. Permafr Periglac Process 16:291–303CrossRefGoogle Scholar
  70. Lackman GM, Gyakum JR (1996) The synoptic- and planetary-scale signatures of precipitating systems over the Mackenzie River Basin. Atmos Ocean 34:647–674CrossRefGoogle Scholar
  71. Lawrimore JH, Menne MJ, Gleason BE et al. (2011) An overview of the Global Historical Climatology Network monthly mean temperature data set, Version 3. J Geophys Res 116. doi: 10.1029/2011JD016187
  72. Leavitt SW (2010) Tree-ring C-H–O isotope variability and sampling. Sci Total Environ 408:5244–5253CrossRefGoogle Scholar
  73. Leavitt SW, Long A (1984) Sampling strategy for stable carbon isotope analysis of tree-rings in pine. Nature 311:145–147CrossRefGoogle Scholar
  74. LeGrande AN, Schmidt GA (2007) Sources of Holocene variability of oxygen isotopes in paleoclimate archives. Clim Past 5:441–455CrossRefGoogle Scholar
  75. Libby LM, Pandolfi LJ (1974) Temperature dependence of isotope ratios in tree rings. Proc Natl Acad Sci USA 71:2482–2486CrossRefGoogle Scholar
  76. Liu Z, Kennedy CD, Bowen GJ (2011) Pacific/North American teleconnection controls on precipitation isotope ratios across the contiguous United States. Earth Planet Sci Lett 310:319–326CrossRefGoogle Scholar
  77. Luckman BH, Wilson RJS (2005) Summer temperatures in the Canadian Rockies during the last millennium: a revised record. Clim Dynam 24:131–144CrossRefGoogle Scholar
  78. Mackay JR (1983) Downward water movement into frozen ground, western arctic coast, Canada. Can J Earth Sci 20:120–134CrossRefGoogle Scholar
  79. Mann ME, Zhang Z, Hughes MK et al (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257CrossRefGoogle Scholar
  80. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801CrossRefGoogle Scholar
  81. McGuire AD, Ruess RW, Lloyd A, Yarie J, Clein JS, Juday GP (2010) Vulnerability of white spruce tree growth in interior Alaska in response to climate variability: dendrochronological, demographic, and experimental perspectives. Can J For Res 40:1197–1209CrossRefGoogle Scholar
  82. Mock CJ, Bartlein PJ, Anderson PM (1998) Atmospheric circulation patterns and spatial climatic variations in Beringia. Int J Climatol 18:1085–1104CrossRefGoogle Scholar
  83. Overpeck J, Hughen KA, Hardy D et al (1997) Arctic environmental change of the last four centuries. Science 278:1251–1256CrossRefGoogle Scholar
  84. Petrone RM, Rouse WR (2000) Synoptic controls on the surface energy and water budgets in sub-arctic regions of Canada. Int J Climatol 20:1149–1165CrossRefGoogle Scholar
  85. Pisaric MFJ, Carey SK, Kokelj S V, Youngblut D (2007) Anomalous 20th century tree growth, Mackenzie Delta, Northwest Territories, Canada. Geophys Res Lett 34. doi: 10.1029/2006GL029139
  86. Porter TJ, Middlestead P (2012) On estimating the precision of stable isotope ratios in processed tree-rings. Dendrochronologia 30:239–242CrossRefGoogle Scholar
  87. Porter TJ, Pisaric MFJ (2011) Temperature-growth divergence in white spruce forests of Old Crow Flats, Yukon Territory, and adjacent regions of northwestern North America. Glob Chang Biol 17:3418–3430CrossRefGoogle Scholar
  88. Porter TJ, Pisaric MFJ, Kokelj SV, Edwards TWD (2009) Climatic signals in δ13C and δ18O of tree-rings from white spruce in the Mackenzie Delta region, northern Canada. Arct Antarct Alp Res 41:497–505CrossRefGoogle Scholar
  89. Rayner NA, Parker DE, Horton EB et al. (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108. doi: 10.1029/2002JD002670
  90. Roden JS, Lin G, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Acta 64:21–35CrossRefGoogle Scholar
  91. Rouse WR (1984) Microclimate at Arctic tree line, 1. Radiation balance of tundra and forest. Water Resour Res 20:57–66CrossRefGoogle Scholar
  92. Saurer M, Schweingruber FH, Vaganov EA, Shiyatov SG, Siegwolf R (2002) Spatial and temporal oxygen isotope trends at the northern tree-line in Eurasia. Geophys Res Lett 29. doi: 10.1029/2001GL013739
  93. Saurer M, Kress A, Leuenberger M, Rinne KT, Treydte KS, Siegwolf RTW (2012) Influence of atmospheric circulation patterns on the oxygen isotope ratio of tree rings in the Alpine region. J Geophys Res 117. doi: 10.1029/2011JD016861
  94. Schmidt GA, Hoffmann G, Shindell DT, Hu Y (2005) Modeling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere-troposphere water exchange. J Geophys Res 110. doi: 10.1029/2005JD005790
  95. Schmidt GA, Ruedy R, Hansen JE et al (2006) Present-day atmospheric simulations using GISS ModelE: comparison to in situ, satellite, and reanalysis data. J Clim 19:153–192CrossRefGoogle Scholar
  96. Seftigen K, Linderholm HW, Loader NJ, Liu Y, Young GHF (2011) The influence of climate on 13C/12C and 18O/16O ratios in tree ring cellulose of Pinus sylvestris L. growing in the central Scandinavian Mountains. Chem Geol 286:84–93Google Scholar
  97. Serreze MC, Barry RG (2005) The arctic climate system. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  98. Sidorova OV, Siegwolf RTW, Saurer M, Naurzbaev MM, Vaganov EA (2008) Isotopic composition (δ13C, δ18O) in wood and cellulose of Siberian larch trees for early Medieval and recent periods. J Geophys Res 113. doi: 10.1029/2007JG000473
  99. Sodemann H, Schweirz C, Wernli H (2008) Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J Geophys Res 113. doi: 10.1029/2007JD008503
  100. Speer JH (2010) Fundamentals of tree-ring research. University of Arizona Press, TucsonGoogle Scholar
  101. Sternberg LSL (1989) Oxygen and hydrogen isotope measurements in plant cellulose analysis. In: Linskens HF, Jackson JF (eds) Modern methods of plant analysis: plant fibers. Springer, New York, pp 89–99Google Scholar
  102. Sturm C, Zhang Q, Noone D (2010) An introduction to stable water isotopes in climate models: benefits of forward proxy modelling for paleoclimatology. Clim Past 6:115–129CrossRefGoogle Scholar
  103. Szeicz JM, MacDonald GM (1995) Dendroclimatic reconstruction of summer temperatures in northwestern Canada since A.D. 1638 based on age-dependent modelling. Quat Res 44:257–266CrossRefGoogle Scholar
  104. Szeicz JM, MacDonald GM (1996) A 930-year ring-width chronology from moisture-sensitive white spruce (Picea glauca Moench) in northwestern Canada. Holocene 6:345–351CrossRefGoogle Scholar
  105. Szeto KK, Stewart RE, Yau MK, Gyakum J (2008) The Mackenzie climate system: a synthesis of MAGS atmospheric research. In: Woo M (ed) Cold region atmospheric and hydrologic studies: the Mackenzie GEWEX experience. Volume 1: atmospheric dynamics. Springer, New York, pp 23–50CrossRefGoogle Scholar
  106. Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dynam 9:303–319CrossRefGoogle Scholar
  107. Treydte KS, Schleser GH, Helle G et al (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182CrossRefGoogle Scholar
  108. Uppala SM, Kållberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J Royal Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  109. Van Oldenborgh GJ (2000) What caused the onset of the 1997–98 El Niño? Mon Weather Rev 128:2601–2607CrossRefGoogle Scholar
  110. Viau AE, Ladd M, Gajewski K (2012) The climate of North America during the past 2000 years reconstructed from pollen data. Glob Planet Chang 84–85:75–83CrossRefGoogle Scholar
  111. Wahl ER, Ammann CM (2007) Robustness of the Mann, Bradley, Hughes reconstruction of Northern Hemisphere surface temperatures: examination of criticisms based on the nature and processing of proxy climate evidence. Clim Chang 85:33–69CrossRefGoogle Scholar
  112. Wahl HE, Fraser DB, Harvey RC, Maxwell JB (1987) Climate of Yukon. Climatological studies, vol 40. Environment Canada, OttawaGoogle Scholar
  113. Werner RA, Brand WA (2001) Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spec 15:501–519CrossRefGoogle Scholar
  114. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Climat App Meteorol 23:201–213CrossRefGoogle Scholar
  115. Wilmking M, Juday GP, Barber VA, Zald HSJ (2004) Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Glob Chang Biol 10:1724–1736CrossRefGoogle Scholar
  116. Wilson R, D’Arrigo R, Buckley B et al (2007) A matter of divergence: Tracking recent warming at hemispheric scales using tree ring data. J Geophys Res 112. doi: 10.1029/2006JD008318
  117. Youngblut D, Luckman B (2008) Maximum June-July temperatures in the southwest Yukon over the last 300 years reconstructed from tree rings. Dendrochronologia 25:153–166CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Trevor J. Porter
    • 1
    • 2
  • Michael F. J. Pisaric
    • 2
    • 3
  • Robert D. Field
    • 4
    • 5
  • Steven V. Kokelj
    • 6
  • Thomas W. D. Edwards
    • 7
  • Peter deMontigny
    • 2
  • Richard Healy
    • 4
  • Allegra N. LeGrande
    • 4
  1. 1.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Department of Geography and Environmental StudiesCarleton UniversityOttawaCanada
  3. 3.Department of GeographyBrock UniversitySt. CatharinesCanada
  4. 4.NASA Goddard Institute for Space StudiesNew YorkUSA
  5. 5.Department of Applied Physics and Applied MathematicsColumbia UniversityNew YorkUSA
  6. 6.Aboriginal Affairs and Northern Development CanadaYellowknifeCanada
  7. 7.Department of Earth and Environmental SciencesUniversity of WaterlooWaterlooCanada

Personalised recommendations