Climate Dynamics

, Volume 42, Issue 1–2, pp 381–399 | Cite as

Different flavors of the Atlantic Multidecadal Variability

  • Davide ZanchettinEmail author
  • Oliver Bothe
  • Wolfgang Müller
  • Jürgen Bader
  • Johann H. Jungclaus


We investigate how differently-constructed indices for North Atlantic sea-surface temperatures (NASSTs) describe the “Atlantic Multidecadal Variability” (AMV) in a suite of unperturbed as well as externally-forced millennial (pre-industrial period) climate simulations. The simulations stem from an ensemble of Earth system models differing in both resolution and complexity. Different criteria exist to construct AMV indices capturing different aspects of the phenomenon. Although all representations of the AMV maintain strong multidecadal variability, they depict different characteristics of simulated low-frequency NASST variability, evolve differently in time and relate to different hemispheric teleconnections. Due to such multifaceted signatures in the ocean-surface as well as in the atmosphere, reconstructions of past AMV may not univocally reproduce multidecadal NASST variability. AMV features under simulated externally-forced pre-industrial climate conditions are not unambiguously distinguishable, within a linear framework, from AMV features in corresponding unperturbed simulations. This prevents a robust diagnosis of the simulated pre-industrial AMV as a predominantly internal rather than externally-forced phenomenon. We conclude that a multi-perspective assessment of multidecadal NASSTs variability is necessary for understanding the origin of the AMV, its physics and its climatic implications.


Atlantic Multidecadal Variability Sea-surface temperatures Earth system model Teleconnections Natural climate variability Externally-forced climate variability Climate of the last millennium 



The authors thank two anonymous reviewers whose comments helped to improve the study and Katja Lohmann for useful comments on an early version of the manuscript. This research was supported by the Max Planck Society for the Advancement of Science. This work was funded by the Federal Ministry for Education and Research in Germany (BMBF) through the research program “MiKlip” (FKZ:01LP1158A). O.B. is funded by the DFG through the Cluster of Excellence CliSAP, University of Hamburg. J.B. is partly funded by the DecCen project funded by the research council of Norway. J. H. J. received funding from the European Community 7th framework program under grant agreement GA212643 (THOR: “Thermohaline Overturning—at Risk?”, 2008–2012). We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling and the participating groups for producing and making available the model output.


  1. Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature. doi: 10.1038/nature10946 Google Scholar
  2. Bothe O, Jungclaus JH, Zanchettin D, Zorita E (2012) Climate of the last millennium: ensemble consistency of simulations and reconstructions. Clim Past Discuss 8:2409–2444. doi: 10.5194/cpd-8-2409-2012
  3. Brovkin V, Lorenz SJ, Jungclaus J, Raddatz T, Timmreck C, Reick CH, Segschneider J, Six K (2010) Sensitivity of a coupled climate-carbon cycle model to large volcanic eruptions during the last millennium. Tellus B 62:674–681. doi: 10.1111/j.1600-0889.2010.00471.x CrossRefGoogle Scholar
  4. Choi J, An S-I, Kug J-S, Yeh S-W (2011) The role of mean state on changes in El Niño’s flavours. Clim Dyn 37:1205–1215CrossRefGoogle Scholar
  5. Chylek P, Folland CK, Dijkstra HA, Lesins G, Dubey MK (2011) Icecore data evidence for a prominent near 20 year time-scale of the Atlantic multidecadal oscillation. Geophys Res Lett 38:L13704. doi: 10.1029/2011GL047501 CrossRefGoogle Scholar
  6. Chylek P, Folland C, Frankcombe L, Dijkstra H, Lesins G, Dubey M (2012) Greenland ice core evidence for spatial and temporal variability of the Atlantic Multidecadal Oscillation. Geophys Res Lett 39:L09705. doi: 10.1029/2012GL051241 CrossRefGoogle Scholar
  7. Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology—a review and comparison of 2 techniques. Int J Climatol 14:379–402CrossRefGoogle Scholar
  8. Crowley TJ, Unterman MB (2012) Technical details concerning development of a 1200-yr proxy index for global volcanism. Earth Syst Sci Data Discuss 5:1–28. doi: 10.5194/essdd-5-1-2012 CrossRefGoogle Scholar
  9. Crowley TJ et al (2008) Volcanism and the little ice age. Pages News 16:22–23Google Scholar
  10. DelSole T, Tippett MK, Shukla J (2011) A significant component of unperturbed multidecadal variability in the recent acceleration of global warming. J Clim 24:909–926. doi: 10.1175/2010JCLI3659.1 CrossRefGoogle Scholar
  11. Deser C et al (2012) ENSO and Pacific decadal variability in the community climate system model version 4. J. Clim 25:2622–2651CrossRefGoogle Scholar
  12. Dima M, Lohmann G (2009) Evidence for two distinct modes of large-scale ocean circulation changes over the last century. J Clim 23:5–16. doi: 10.1175/2009JCLI2867.1 CrossRefGoogle Scholar
  13. Dommenget D, Latif M (2008) Generation of hyper-climate modes. Geophys Res Lett 35:L02706. doi: 10.1029/2007GL031087 CrossRefGoogle Scholar
  14. Enfield DB, Cid-Serrano L (2006) Projecting the risk of future climate shifts. Int J Climatol 26:885–895CrossRefGoogle Scholar
  15. Enfield DB, Cid-Serrano L (2010) Secular and multidecadal warmings in the North Atlantic and their relationships with major hurricane activity. Int J Climatol 30(2):174–184Google Scholar
  16. Enfield DB, Mestas-Nuñez AM (1999) Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns. J Clim 12:2719–2733CrossRefGoogle Scholar
  17. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080CrossRefGoogle Scholar
  18. Fernández-Donado L et al (2012) Temperature response to external forcing in simulations and reconstructions of the last millennium. Clim Past Discuss 8:4003–4073. doi: 10.5194/cpd-8-4003-2012 CrossRefGoogle Scholar
  19. Folland CK, Parker DE, Palmer TN (1986) Sahel rainfall and worldwide sea temperatures, 1901–1985. Nature 320:602–607CrossRefGoogle Scholar
  20. Gao C, Robock A, Ammann C (2008) Volcanic forcing of climate over the last 1500 years: an improved ice-core based index for climate models. J Geophys Res 113:D2311. doi: 10.1029/2008JD010239 CrossRefGoogle Scholar
  21. Gent PR et al (2011) The community climate system model version 4. J Clim 24:4973–4991. doi: 10.1175/2011JCLI4083.1 CrossRefGoogle Scholar
  22. Giorgetta MA et al (2012) Climate change from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project 5. Submitted to JAMES, special issue. The Max Planck Institute for Meteorology Earth System ModelGoogle Scholar
  23. Gray ST, Graumlich LJ, Betancourt JL, Pederson GT (2004) A treering based reconstruction of the Atlantic multidecadal oscillation since 1567 AD. Geophys Res Lett 31:L12205CrossRefGoogle Scholar
  24. Grosfeld K, Lohmann G, Rimbu N (2008) The impact of Atlantic and Pacific Ocean sea surface temperature anomalies on the North Atlantic multidecadal variability. Tellus. doi: 10.1111/j.1600-0870.2008.00304.x Google Scholar
  25. Henriksson SV, Räisänen P, Silén J, Laaksonen A (2012) Quasiperiodic climate variability with a period of 50–80 years: fourier analysis of measurements and earth system model simulations. Clim Dyn. doi: 10.1007/s00382-012-1341-0 Google Scholar
  26. Jungclaus JH et al (2010) Climate and carbon-cycle variability over the last millennium. Clim Past 6:723–737. doi: 10.5194/cp-6-723-2010 CrossRefGoogle Scholar
  27. Jungclaus JH et al (2012) Characteristics of the ocean simulations in MPIOM, the ocean component of the Max Planck Institute Earth System Model. Submitted to JAMES, special issue. The Max Planck Institute for Meteorology Earth System ModelGoogle Scholar
  28. Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1986CrossRefGoogle Scholar
  29. Knight JF (2009) The Atlantic multidecadal oscillation inferred from the forced climate response in coupled general circulation models. J Clim 22:1610–1625CrossRefGoogle Scholar
  30. Knudsen MF, Seidenkrantz M-S, Jacobsen BH, Kuijpers A (2011) Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nature Comm 2:178. doi: 10.1038/ncomms1186 CrossRefGoogle Scholar
  31. Kwon Y-O et al (2010) Role of Gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere-ocean interaction: a review. J Clim 23:3249–3281CrossRefGoogle Scholar
  32. Landrum L, Otto-Bliesner BL, Wahl ER, Conley A, Lawrence PJ, Teng H (2011) Last millennium climate and its variability in CCSM4. J Clim. doi: 10.1175/JCLI-D-11-00326.1
  33. Liu Z (2012) Dynamics of interdecadal climate variability: a historical perspective. J. Clim 25:1963–1995. doi: 10.1175/2011JCLI3980.1 CrossRefGoogle Scholar
  34. Mann ME, Emanuel KA (2006) Atlantic hurricane trends linked to climate change. Eos Trans AGU 87(24):233–244CrossRefGoogle Scholar
  35. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260CrossRefGoogle Scholar
  36. Manzini E, Cagnazzo C, Fogli PG, Bellucci A, Müller WA (2012) Stratosphere-troposphere coupling at inter-decadal time scales: implications for the North Atlantic Ocean. Geophys Res Lett 39:L05801. doi: 10.1029/2011GL050771 CrossRefGoogle Scholar
  37. Marshall J et al (2001) North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol 21:1863–1898. doi: 10.1002/joc.693 CrossRefGoogle Scholar
  38. Menary MB, Park W, Lohman K, Vellinga M, Palmer MD, Latif M, Jungclaus JH (2012) A multimodel comparison of centennial Atlantic meridional overturning circulation variability. Clim Dyn 38:2377–2388CrossRefGoogle Scholar
  39. Neumaier A, Schneider T (2001) Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans Math Softw 27:27–57CrossRefGoogle Scholar
  40. Otterå OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci. doi: 10.1038/NGEO995 Google Scholar
  41. Park W, Latif M (2010) Pacific and Atlantic multidecadal variability in the Kiel Climate Model. Geophys Res Lett 37:L24702. doi: 10.1029/2010GL045560 Google Scholar
  42. Saenger C, Cohen AL, Oppo DW, Halley RB, Carilli JE (2009) Surface temperature trends and variability in the low-latitude North Atlantic since 1552. Nat Geosci 2:492–495. doi: 10.1038/ngeo552 CrossRefGoogle Scholar
  43. Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367:723–726. doi: 10.1038/367723a0 CrossRefGoogle Scholar
  44. Schmidt GA et al (2011) Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci Model Dev 4:33–45. doi: 10.5194/gmd-4-33-2011 CrossRefGoogle Scholar
  45. Ting M, Kushnir Y, Seager R, Li C (2009) Forced and internal twentieth century SST in the North Atlantic. J Clim 22:1469–1481. doi: 10.1175/2008JCLI2561.1 CrossRefGoogle Scholar
  46. Ting M, Kushnir Y, Seager R, Li C (2011) Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys Res Lett 38:L17705. doi: 10.1029/2011GL048712 CrossRefGoogle Scholar
  47. Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704. doi: 10.1029/2006GL026894 CrossRefGoogle Scholar
  48. Vieira LEA, Solanki SK, Krivova NA, Usoskin I (2011) Evolution of the solar irradiance during the holocene. Astron Astrophys 531:A6. doi: 10.1051/0004-6361/201015843 CrossRefGoogle Scholar
  49. Vincze M, Jánosi IM (2011) Is the Atlantic Multidecadal Oscillation (AMO) a statistical phantom? Nonlin Proc Geophys 18:469–475. doi: 10.5194/npg-18-469-2011 CrossRefGoogle Scholar
  50. Wei W, Lohmann G (2012) Simulated atlantic multidecadal oscillation during the holocene. J Clim 25:6989–7002. Google Scholar
  51. Wu Z, Huang NE, Wallace JM, Smoliak BV, Chen X (2011a) On the time-varying trend in global-mean surface temperature. Clim Dyn 37:759–773. doi: 10.1007/s00382-011-1128-8 CrossRefGoogle Scholar
  52. Wu S, Liu Z, Zhang R, Delworth TL (2011b) On the observed relationship between the Pacific decadal oscillation and the Atlantic Multi-decadal Oscillation. J Oceanogr 67:27–35. doi: 10.1007/s10872-011-0003-x CrossRefGoogle Scholar
  53. Wyatt MG, Kravtsov S, Tsonis AA (2011) Atlantic multidecadal oscillation and Northern Hemisphere’s climate variability. Clim Dyn. doi: 10.1007/s00382-011-1071-8 Google Scholar
  54. Yoshimori M, Raible CC, Stocker TF, Renold M (2010) Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state. Clim Dyn 34:101–121. doi: 10.1007/s00382-009-0540-9 CrossRefGoogle Scholar
  55. Zanchettin D, Rubino A, Traverso P, Tomasino M (2008) Impact of variations in solar activity on hydrological decadal patterns in northern Italy. J Geophys Res 113:D12102. doi: 10.1029/2007JD009157 CrossRefGoogle Scholar
  56. Zanchettin D, Rubino A, Jungclaus JH (2010) Intermittent multidecadal-to-centennial fluctuations dominate global temperature evolution over the last millennium. Geophys Res Lett 37:L14702. doi: 10.1029/2010GL043717 CrossRefGoogle Scholar
  57. Zanchettin D, Rubino A, Bothe O, Matei D, Jungclaus JH (2012a) Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium. Clim Dyn. doi: 10.1007/s00382-012-1361-9 Google Scholar
  58. Zanchettin D, Timmreck C, Graf H-F, Rubino A, Lorenz S, Krueger K, Lohmann K, Jungclaus JH (2012b) Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Clim Dyn 39(1–2):419–444. doi: 10.1007/s00382-011-1167-1 CrossRefGoogle Scholar
  59. Zhang R, Delworth TL (2007) Impact of the Atlantic Multidecadal Oscillation on North Pacific climate variability. Geophys Res Lett 34:L23708. doi: 10.1029/2007GL031601 Google Scholar
  60. Zhong Y et al (2010) Centennial-scale climate change from decadally-paced explosive volcanism: a coupled sea ice-ocean mechanism. Clim Dyn 23:5–7. doi: 10.1007/s00382-010-0967-z Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Davide Zanchettin
    • 1
    Email author
  • Oliver Bothe
    • 1
    • 2
  • Wolfgang Müller
    • 1
  • Jürgen Bader
    • 1
    • 3
  • Johann H. Jungclaus
    • 1
  1. 1.Max Planck Institute for MeteorologyHamburgGermany
  2. 2.University of HamburgHamburgGermany
  3. 3.Bjerknes Centre for Climate ResearchUni ResearchBergenNorway

Personalised recommendations