Advertisement

Climate Dynamics

, Volume 41, Issue 3–4, pp 775–785 | Cite as

Predictability of the mid-latitude Atlantic meridional overturning circulation in a multi-model system

  • Holger PohlmannEmail author
  • Doug M. Smith
  • Magdalena A. Balmaseda
  • Noel S. Keenlyside
  • Simona Masina
  • Daniela Matei
  • Wolfgang A. Müller
  • Philippe Rogel
Article

Abstract

Assessing the skill of the Atlantic meridional overturning circulation (AMOC) in decadal hindcasts (i.e. retrospective predictions) is hampered by a lack of observations for verification. Models are therefore needed to reconstruct the historical AMOC variability. Here we show that ten recent oceanic syntheses provide a common signal of AMOC variability at 45°N, with an increase from the 1960s to the mid-1990s and a decrease thereafter although they disagree on the exact magnitude. This signal correlates with observed key processes such as the North Atlantic Oscillation, sub-polar gyre strength, Atlantic sea surface temperature dipole, and Labrador Sea convection that are thought to be related to the AMOC. Furthermore, we find potential predictability of the mid-latitude AMOC for the first 3–6 year means when we validate decadal hindcasts for the past 50 years against the multi-model signal. However, this predictability is not found in models driven only by external radiative changes, demonstrating the need for initialization of decadal climate predictions.

Keywords

Decadal prediction Atlantic MOC Predictability Multi-model comparison 

Notes

Acknowledgments

This work was supported by the joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101), EU-ENSEMBLES, EU-THOR and German Ministry for Education and Research (BMBF)-The North Atlantic as Part of the Earth System: From System Comprehension to Analysis of Regional Impacts projects. We thank two anonymous reviewers for their valuable comments which helped to improved the paper, M. McVean at ECMWF for carrying out the DePreSys PPE experiments, E. da Costa for performing the CERFACS experiments, and S. Cusack for performing the Had simulations. Observational time series of layer thickness for LS water courtesy of D. Kieke, IUP, Universität Bremen, Germany; NAO index of J. Hurrell, NCAR, CO, USA (http://www.cgd.ucar.edu/cas/jhurrell/indices.html), and altimeter products were produced and distributed by Aviso (http://www.aviso.oceanobs.com), as part of the Ssalto ground processing segment. The Atlantic dipole SST index is calculated from HadISST data (Rayner et al. 2003) (http://www.metoffice.gov.uk/hadobs/hadisst/).

References

  1. Anderson D, Stockdale T, Balmaseda M, Ferranti L, Vitart F, Molteni F, Doblas-Reyes F, Mogenson K, Vidard A (2007) Development of the ECMWF seasonal forecasting system 3. ECMWF technical memorandum 503. www.ecmwf.int. Accessed 19 Oct 2012
  2. Balmaseda MA, Vidard A, Anderson DLT (2008) The ECMWF ocean analysis system ORA-S3. Mon Wea Rev 136:3018–3034. doi: 10.1175/2008MWR2433.1 CrossRefGoogle Scholar
  3. Bellucci A, Masina S, DiPietro P, Navarra A (2007) Using temperature-salinity relations in a global ocean implementation of a multivariate data assimilation scheme. Mon Wea Rev 135:3785–3807. doi: 10.1175/2007MWR1821.1 CrossRefGoogle Scholar
  4. Böning CW, Scheinert M, Dengg J, Biastoch A, Funk A (2006) Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys Res Lett 33:L21S01. doi: 10.1029/2006GL026906 CrossRefGoogle Scholar
  5. Bryden HL, Longworth HR, Cunningham SA (2005) Slowing of the Atlantic meridional overturning circulation at 25 N. Nature 438:655–657. doi: 10.1038/nature04385 CrossRefGoogle Scholar
  6. Collins M, Booth BBB, Harris GR, Murphy JM, Sexton DMH, Webb MJ (2006a) Towards quantifying uncertainty in transient climate change. Clim Dyn 27:127–147. doi: 10.1007/s00382-006-0121-0 CrossRefGoogle Scholar
  7. Collins M, Botzet M, Carril AF, Drange H, Jouzeau A, Latif M, Masina S, Otteraa OH, Pohlmann H, Sorteberg A, Sutton R, Terray L (2006b) Interannual to decadal climate predictability in the North Atlantic: a multi-model ensemble study. J Clim 19:1195–1203. doi: 10.1175/JCLI3654.1 CrossRefGoogle Scholar
  8. Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Hinton T, Jones CD, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Totterdell I, Woodward S, Reichler T, Kim J (2008) Evaluation of the HadGEM2 model. Met Office Hadley Centre Technical Note HCTN 74. www.metoffice.gov.uk. Accessed 19 Oct 2012
  9. Collins M, Booth BBB, Bhaskaran B, Harris GR, Murphy JM, Sexton DMH, Webb MJ (2010) Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles. Clim Dyn 36:1737–1766. doi: 10.1007/s00382-010-0808-0 CrossRefGoogle Scholar
  10. Cunningham SA, Marsh R (2010) Observing and modeling changes in the Atlantic MOC. Wiley Interdiscip Rev Clim Change 1:180–191. doi: 10.1002/wcc.22 Google Scholar
  11. Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJ-M, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5N. Science 317:935–938. doi: 10.1126/science.1141304 CrossRefGoogle Scholar
  12. Curry RG, McCartney MS (2001) Ocean gyre circulation changes associated with the North Atlantic Oscillation. J Phys Oceanogr 31:3374–3400. doi: 10.1175/1520-0493(1997)125<0809:COAFIT>2.0.CO;2 CrossRefGoogle Scholar
  13. Curry RG, McCartney MS, Joyce TM (1998) Oceanic transport of subpolar climate signals to mid-depths subtropical waters. Nature 391:575–577. doi: 10.1038/35356 CrossRefGoogle Scholar
  14. Daget N, Weaver AT, Balmaseda MA (2009) Ensemble estimation of background-error variances in a three-dimensional variational data assimilation system for the global ocean. Q J R Meteorol Soc 135:1071–1094. doi: 10.1002/qj.412 CrossRefGoogle Scholar
  15. Dibarboure G, Le Traon PY, Rosmorduc V (2004) Ssalto/Duacs multimission altimeter products. AVISO Newsletter 10:10–11. http://www.aviso.oceanobs.com. Accessed 19 Oct 2012Google Scholar
  16. Doblas-Reyes FJ, Weisheimer A, Déqué M, Keenlyside N, McVean M, Murphy JM, Rogel P, Smith D, Palmer TN (2009) Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts. Q J R Meteorol Soc 135:1538–1559. doi: 10.1002/qj.464 CrossRefGoogle Scholar
  17. Domingues CM, Church JA, White NJ, Gleckler PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimate of upper-ocean warming and multidecadal sea level rise. Nature 453:1090–1093. doi: 10.1038/nature07080 CrossRefGoogle Scholar
  18. Dunstone NJ, Smith DM (2010) Impact of atmosphere and sub-surface ocean data on decadal climate prediction. Geophys Res Lett 37:L02709. doi: 10.1029/2009GL041609 CrossRefGoogle Scholar
  19. Goddard L, Kumar A, Solomon A, Smith D, Boer G, Gonzalez P, Kharin V, Merryfield W, Deser C, Mason SJ, Kirtman BP, Msadek R, Sutton R, Hawkins E, Fricker T, Hegerl G, Ferro CAT, Stephenson DB, Meehl GA, Stockdale T, Burgman R, Greene AM, Kushnir Y, Newman M, Carton J, Fukumori I, Delworth T (2012) A verification framework for interannual-to-decadal predictions experiments. Clim Dyn. doi: 10.1007/s00382-012-1481-2
  20. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168. doi: 10.1007/s003820050010 CrossRefGoogle Scholar
  21. Graham RJ, Gordon M, McLean PJ, Ineson S, Huddleston MR, Davey MK, Brookshaw A, Barnes RTH (2005) A performance comparison of coupled and uncoupled versions of the Met Office seasonal prediction general circulation model. Tellus 57:320–339. doi: 10.1111/j.1600-0870.2005.00116.x CrossRefGoogle Scholar
  22. Griffies SM, Bryan K (1997) Predictability of North Atlantic multidecadal climate variability. Science 275:181–184. doi: 10.1126/science.275.5297.181 CrossRefGoogle Scholar
  23. Häkkinen S, Rhines PB (2004) Decline of subpolar North Atlantic circulation during the 1990s. Science 304:555–559. doi: 10.1126/science.269.5224.676 CrossRefGoogle Scholar
  24. Hurrell J (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  25. Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo J–J, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19:3952–3972. doi: 10.1175/JCLI3827.1 CrossRefGoogle Scholar
  26. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteorol Soc 77:437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  27. Kanzow T, Send U, McCartney M (2008) On the variability of the deep meridional transports in the tropical North Atlantic. Deep-Sea Res 55:1601–1623. doi: 10.1016/j.dsr.2008.07.011 CrossRefGoogle Scholar
  28. Keenlyside NS, Ba J (2010) Prospects for decadal climate prediction. Wiley Interdiscip Rev Clim Change 1:627–635. doi: 10.1002/wcc.69 CrossRefGoogle Scholar
  29. Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic Sector. Nature 453:84–88. doi: 10.1038/nature06921 CrossRefGoogle Scholar
  30. Kharin VV, Boer GJ, Merryfield WJ, Scinocca JF, Lee W-S (2012) Statistical adjustment of decadal predictions in a changing climate. Geophys Res Lett 39:L19705. doi: 10.1029/2012GL052647 Google Scholar
  31. Kieke D, Rhein M, Stramma L, Smethie WM, LeBel DA, Zenk W (2006) Changes in the CFC inventories and formation rates of upper Labrador Sea water, 1997–2001. J Phys Oceanogr 36:64–86. doi: 10.1175/JPO2814.1 CrossRefGoogle Scholar
  32. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi: 10.1029/2005GL024233 CrossRefGoogle Scholar
  33. Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett 33:L17706. doi: 10.1029/2006GL026242 CrossRefGoogle Scholar
  34. Köhl A, Stammer D, Cornuelle B (2007) Interannual to decadal changes in the ECCO global synthesis. J Phys Oceanogr 37:313–337. doi: 10.1175/JPO3014.1 CrossRefGoogle Scholar
  35. Kröger J, Müller WA, von Storch J-S (2012) Impact of different ocean reanalyses on decadal climate prediction. Clim Dyn 39:795–810. doi: 10.1007/s00382-012-1310-7 CrossRefGoogle Scholar
  36. Latif M, Collins M, Pohlmann H, Keenlyside N (2006) A Review of predictability studies of Atlantic sector climate on decadal time scales. J Clim 19:5971–5986. doi: 10.1175/JCLI3945.1 CrossRefGoogle Scholar
  37. Lohmann K, Drange H, Bentsen M (2009) Response of the North Atlantic subpolar gyre to persistent North Atlantic oscillation like forcing. Clim Dyn 32:273–285. doi: 10.1007/s00382-008-0467-6 CrossRefGoogle Scholar
  38. Lozier MS (2012) Overturning in the North Atlantic. Annu Rev Marine Sci 4:291–315. doi: 10.1146/annurev-marine-120710-100740 CrossRefGoogle Scholar
  39. Lozier MS, Roussenov V, Reed MSC, Williams RG (2010) Opposing decadal changes for the North Atlantic meridional overturning circulation. Nat Geosci 3:728–734. doi: 10.1038/NGEO947 CrossRefGoogle Scholar
  40. Lyman JM, Good SA, Gouretski VV, Ishii M, Johnson GC, Palmer MD, Smith DM, Willis JK (2010) Robust warming of the global upper ocean. Nature 465:334–337. doi: 10.1038/nature09043 CrossRefGoogle Scholar
  41. Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997) A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J Geophys Res 102:5753–5766. doi: 10.1029/96JC02775 CrossRefGoogle Scholar
  42. Masina S, Di Pietro P, Storto A, Navarra A (2011) Global ocean re-analyses for climate applications. Dyn Atmos Oceans 52:341–366. doi: 10.1016/j.dynatmoce.2011.03.006 CrossRefGoogle Scholar
  43. Matei D, Baehr J, Jungclaus JH, Haak H, Müller WA, Marotzke J (2012a) Multiyear prediction of monthly mean Atlantic meridional overturning circulation at 26.5N. Science 335:76–79. doi: 10.1126/science.1210299 CrossRefGoogle Scholar
  44. Matei D, Pohlmann H, Jungclaus J, Müller W, Haak H, Marotzke J (2012b) Two tales of initializing decadal climate predictions experiments with the ECHAM5/MPI-OM model. J Clim 25:8502–8523. doi: 10.1175/JCLI-D-11-00633.1 CrossRefGoogle Scholar
  45. Matei D, Baehr J, Jungclaus JH, Haak H, Müller WA, Marotzke J (2012c) Response to Comment on ‘multiyear prediction of monthly mean Atlantic meridional overturning circulation at 26.5°N. Science 338:604. doi: 10.1126/science.1223200 CrossRefGoogle Scholar
  46. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New YorkGoogle Scholar
  47. Munoz E, Kirtman B, Weijer W (2011) Varied representation of the Atlantic Meridional Overturning across multidecadal ocean reanalyses. Deep Sea Res II 58:1848–1857. doi: 10.1016/j.dsr2.2010.10.064 CrossRefGoogle Scholar
  48. Pohlmann H, Botzet M, Latif M, Roesch A, Wild M, Tschuck P (2004) Estimating the long-term predictability potential of a coupled AOGCM. J Clim 17:4463–4472. doi: 10.1175/3209.1 CrossRefGoogle Scholar
  49. Pohlmann H, Jungclaus JH, Köhl A, Stammer D, Marotzke J (2009) Initializing Decadal Climate Predictions with the GECCO Oceanic Synthesis: effects on the North Atlantic. J Clim 22:3926–3938. doi: 10.1175/2009JCLI2535.1 CrossRefGoogle Scholar
  50. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  51. Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicek M, Ansell TJ, Tett SFB (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 data set. J Clim 19:446–469. doi: 10.1175/JCLI3637.1 CrossRefGoogle Scholar
  52. Robson J, Sutton R, Lohmann K, Smith D, Palmer MD (2012) Causes of the rapid warming of the North Atlantic ocean in the mid-1990s. J Clim 25:4116–4134. doi: 10.1175/JCLI-D-11-00443.1 CrossRefGoogle Scholar
  53. Send U, Lankhorst M, Kanzow T (2011) Observation of decadal change in the Atlantic meridional overturning circulation using 10 years of continuous transport data. Geophys Res Lett 38:L24606. doi: 10.1029/2011GL049801 CrossRefGoogle Scholar
  54. Smith DM, Murphy JM (2007) An objective ocean temperature and salinity analysis using covariances from a global climate model. J Geophys Res 112:C02022. doi: 10.1029/2005JC003172 CrossRefGoogle Scholar
  55. Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799. doi: 10.1126/science.1139540 CrossRefGoogle Scholar
  56. Smith DM, Eade R, Dunstone NJ, Fereday D, Murphy JM, Pohlmann H, Scaife AA (2010) Skilful multi-year predictions of Atlantic hurricane frequency. Nat Geosci 3:846–849. doi: 10.1038/ngeo1004 CrossRefGoogle Scholar
  57. Srokosz M, Baringer M, Bryden H, Cunningham S, Delworth T, Lozier S, Marotzke J, Sutton R (2012) Past, present and future change in the Atlantic meridional overturning circulation. Bull Amer Meteorol Soc. doi: 10.1175/BAMS-D-11-00151.1
  58. Stockdale TN (1997) Coupled ocean–atmosphere forecasts in the presence of climate drift. Mon Weath Rev 125:809–818. doi: 10.1175/1520-0493(1997)125<0809:COAFIT>2.0.CO;2 CrossRefGoogle Scholar
  59. Swingedouw D, Mignot J, Labetoulle S, Guilyardi E, Madec G (2012) Initialisation and predictability of the AMOC over the last 50 years in a climate model. Clim Dyn. doi: 10.1007/s00382-012-1516-8
  60. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Amer Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  61. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf J-F, Morcrette J–J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  62. Vecchi GA, Msadek R, Delworth TL, Dixon KW, Guilyardi E, Hawkins E, Karspeck AR, Mignot J, Robson J, Rosati A, Zhang R (2012) Comment on ‘multiyear prediction of monthly mean Atlantic meridional overturning circulation at 26.5°N’ Science 338:604. doi: 101126/science.1222566
  63. Weaver AT, Deltel C, Machu E, Ricci S, Daget N (2005) A multivariate balance operator for variational ocean data assimilation. Q J R Meteorol Soc 131:3605–3625. doi: 10.1256/qj.05.119 CrossRefGoogle Scholar
  64. Weisheimer A, Doblas-Reyes F, Rogel P, Da Costa E, Keenlyside N, Balmaseda M, Murphy J, Smith D, Collins M, Bhaskaran B, Palmer T (2007) Initialisation strategies for decadal hindcasts for the 1960–2005 period within the ENSEMBLES project. ECMWF technical memorandum 521. www.ecmwf.int. Accessed 19 Oct 2012
  65. Weisheimer A, Doblas-Reyes JF, Palmer TN, Alessandri A, Arribas A, Déqué M, Keenlyside N, MacVean M, Navarra A, Rogel P (2009) A new multi-model ensemble for seasonal-to-annual predictions-Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys Res Lett 36:L21711. doi: 10.1029/2009GL040896 CrossRefGoogle Scholar
  66. Wilks DS (2011) Statistical methods in the atmospheric sciences, 3rd edn. International geophysics series, Vol 100. Academic Press, ElsevierGoogle Scholar
  67. Willis JK (2010) Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning? Geophys Res Lett 37:L06602. doi: 10.1029/2010GL042372 CrossRefGoogle Scholar
  68. Wunsch C, Heimbach P (2006) Estimated decadal changes in the North Atlantic meridional overturning circulation and heat flux 1993–2004. J Phys Oceanogr 36:2012–2024. doi: 10.1175/JPO2957.1 CrossRefGoogle Scholar
  69. Yeager S, Karspeck A, Danabasoglu G, Tribbia J, Teng H (2012) A decadal prediction case study: late 20th century North Atlantic Ocean heat content. J Clim 25:5173–5189. doi: 10.1175/JCLI-D-11-00595.1 CrossRefGoogle Scholar
  70. Yue S, Pilon P, Cavadias G (2002) Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol 259:254–271CrossRefGoogle Scholar
  71. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi: 10.1029/2006GL026267 CrossRefGoogle Scholar

Copyright information

© Crown Copyright 2013

Authors and Affiliations

  • Holger Pohlmann
    • 1
    • 5
    Email author
  • Doug M. Smith
    • 1
  • Magdalena A. Balmaseda
    • 2
  • Noel S. Keenlyside
    • 3
  • Simona Masina
    • 4
  • Daniela Matei
    • 5
  • Wolfgang A. Müller
    • 5
  • Philippe Rogel
    • 6
  1. 1.Met Office Hadley CentreExeterUK
  2. 2.ECMWFReadingUK
  3. 3.Geophysical Institute and Bjerknes CentreUniversity of BergenBergenNorway
  4. 4.Centro Euro-Mediterraneo sui Cambiamenti ClimaticiIstituto Nazionale di Geofisica e VulcanologiaBolognaItaly
  5. 5.Max-Planck-Institut für MeteorologieHamburgGermany
  6. 6.CERFACS/URA1875/CNRSToulouse, CEDEX 1France

Personalised recommendations