Climate Dynamics

, Volume 41, Issue 7–8, pp 1983–2002 | Cite as

Revisiting wintertime cold air intrusions at the east of the Andes: propagating features from subtropical Argentina to Peruvian Amazon and relationship with large-scale circulation patterns

  • Jhan Carlo Espinoza
  • Josyane Ronchail
  • Matthieu Lengaigne
  • Nelson Quispe
  • Yamina Silva
  • Maria Laura Bettolli
  • Grinia Avalos
  • Alan Llacza
Article

Abstract

This study investigates the spatial and temporal characteristics of cold surges that propagates northward along the eastern flank of the Andes from subtropical to tropical South America analysing wintertime in situ daily minimum temperature observations from Argentina, Bolivia and Peru and ERA-40 reanalysis over the 1975–2001 period. Cold surges usually last 2 or 3 days but are generally less persistent in the southern La Plata basin compared to tropical regions. On average, three to four cold surges are reported each year. Our analysis reveals that 52 % of cold episodes registered in the south of La Plata basin propagate northward to the northern Peruvian Amazon at a speed of around 20 m s−1. In comparison to cold surges that do not reach the tropical region, we demonstrate that these cold surges are characterized, before they reach the tropical region, by a higher occurrence of a specific circulation pattern associated to southern low-level winds progression toward low latitudes combined with subsidence and dry condition in the middle and low troposphere that reinforce the cold episode through a radiative effect. Finally, the relationship between cold surges and atmosphere dynamics is illustrated for the two most severe cold intrusions that reached the Peruvian and Bolivian Amazon in the last 20 years.

Keywords

Peruvian Amazon Bolivian Amazon Argentina Cold surges Low-level winds Circulation patterns Self-organizing maps 

Notes

Acknowledgments

The authors are grateful to the Meteorological Services from Peru (SENAMHI), Bolivia (SENAMHI) and Argentina (SMN) for the data availability. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 212492: CLARIS LPB. A Europe-South America Network for Climate Change Assessment and Impact Studies in La Plata Basin.

References

  1. Ambrizzi T, Hoskins B (1997) Stationary Rossby-wave propagation in a baroclinic atmosphere. Q J R Meteorol Soc 123:919–928CrossRefGoogle Scholar
  2. Badran F, Yacoub M, Thiria S (2004) Self-organizing maps and unsupervised classification. In: Dreyfus G (ed) Neural networks: methodology and applications. Springer, BerlinGoogle Scholar
  3. Bettolli ML, Penalba OC, Vargas WM (2010) Synoptic weather types in the south of South America and their relationship to daily precipitation in the core production region of crops in Argentina. Aust Meteorol Oceanogr J 60:37–48Google Scholar
  4. Bischoff S, Vargas W (2003) The 500 and 1000 hPa weather circulations and their relationship with some extreme climatic conditions over southern South America. Int J Climatol 23:541–556CrossRefGoogle Scholar
  5. Compagnucci RH, Salles MA (1997) Surface pressure patterns during the year over southern South America. Int J Climatol 17:635–653CrossRefGoogle Scholar
  6. Espinoza JC, Lengaigne M, Ronchail J, Janicot S (2012) Large-scale circulation patterns and related rainfall in the Amazon Basin: a neuronal networks approach. Clim Dyn. doi: 10.1007/s00382-011-1010-8 Google Scholar
  7. Flores, S (2001). Análisis de los “friajes” en la Amazonía peruana durante el mes de julio del 2000. Revista de trabajos de investigación. CNDG—Sismología Instituto Geofísico del Perú. V.2. Lima Perú, pp 21–30Google Scholar
  8. Fortune M, Kousky VE (1983) Two severe freezes in Brazil: precursors and synoptic evolution. Mon Weather Rev 111:181–196CrossRefGoogle Scholar
  9. Garreaud RD (1999) Cold air incursions over subtropical South America: a numerical case study. Mon Weather Rev 127:2823–2853CrossRefGoogle Scholar
  10. Garreaud RD (2000) Cold air incursions over subtropical and tropical South America: mean structure and dynamics. Mon Weather Rev 128:2544–2549CrossRefGoogle Scholar
  11. Garreaud R, Wallace JM (1998) Summertime incursions of midlatitude air into subtropical and tropical South America. Mon Weather Rev 126:2713–2733CrossRefGoogle Scholar
  12. Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281(3–4):180–195CrossRefGoogle Scholar
  13. Gueye AK, Janicot S, Niang A, Sawadogo S, Sultan B, Diongue-Niang A, Thiria S (2010) Weather regimes over Senegal during the summer monsoon season using self-organizing maps and hierarchical ascendant classification. Part I: synoptic time scale. Clim Dyn. doi: 10.1007/s00382-010-0782-6 Google Scholar
  14. Hamilton MG, Tarifa JR (1978) Synoptic aspects of a polar outbreak leading to frost in tropical Bazil, July 1972. Mon Weather Rev 106:1545–1556CrossRefGoogle Scholar
  15. Hewitson B, Crane R (2002) Self-organizing maps: applications to synoptic climatology. Clim Res 26:1315–1337Google Scholar
  16. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice Hall, Englewood CliffsGoogle Scholar
  17. Jones C, Carvalho LMV, Higgins RW, Waliser DE, Schemm JKE (2004) Climatology of tropical intraseasonal convective anomalies: 1979–2002. J Clim 17:523–539CrossRefGoogle Scholar
  18. Kiladis GN, Weickmann KM (1992) Circulation anomalies associated with tropical convection during northern winter. Mon Weather Rev 120:1900–1923CrossRefGoogle Scholar
  19. Kohonen T (1984) Self organization and associative memory, 2nd edn. Springer, Berlin, p 312Google Scholar
  20. Kohonen T (2001) Self–organizing maps. Springer series in information sciences, 3rd edn. Springer, New York, p 30Google Scholar
  21. Kousky VE (1979) Frontal influence on northeast Brazil. Mon Weather Rev 107:1140–1153CrossRefGoogle Scholar
  22. Krishnamurti TN, Tewari M, Chakraborty DR, Marengo J, Silva Dias PL, Satyamurty P (1999) Downstream amplification: a possible precursor to major freeze events over southeastern Brazil. Weather Forecast 14:242–270CrossRefGoogle Scholar
  23. Lau KM, Chan PH (1986) Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon Weather Rev 114:1354–1367CrossRefGoogle Scholar
  24. Leloup J, Lachkar Z, Boulanger JP, Thiria S (2007) Detecting decadal changes in ENSO using neural networks. Clim Dyn 28:147–162CrossRefGoogle Scholar
  25. Leloup J, Lengaigne M, Boulanger J-P (2008) Twentieth century ENSO characteristics in the IPCC database. Clim Dyn 30:277–291CrossRefGoogle Scholar
  26. Li ZX, Treut HL (1999) Transient behavior of the meridional moisture transport across South America and its relation to atmospheric circulation patterns. Geoph Res Lett 26(10):1409–1412CrossRefGoogle Scholar
  27. Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277Google Scholar
  28. Liebmann B, Kiladis GN, Marengo JA, Ambrizzi T, Glick JD (1999) Submonthly convective variability over South America and the South Atlantic convergence zone. J Clim 12:1877–1891CrossRefGoogle Scholar
  29. Lupo AR, Nocera JJ, Bosart LF, Hoffman EG, Knight DJ (2001) South American cold surges: types, composites, and case studies. Mon Weather Rev 129(5):1021–1041CrossRefGoogle Scholar
  30. Marengo J (1983) Estudios Agroclimático de la zona de Genaro Herrera (Requena—Loreto) y climático en la selva baja norte del Perú. Tesis UNALM, Ing. Meteorólogo. Lima, 464 ppGoogle Scholar
  31. Marengo J (1984) Estudio Sinóptico Climático de los Friajes (Friagens) en la Amazonía Peruana. Revista Forestal del Perú 12(1–2):55–80Google Scholar
  32. Marengo J, Cornejo A, Satymurty P, Nobre C, Sea W (1997) Cold surges in tropical and extratropical South America: the strong event in June 1994. Mon Weather Rev 125:2759–2786CrossRefGoogle Scholar
  33. Marengo J et al (2010) Recent developments on the South American monsoon system. Int J Climatol. doi: 10.1002/joc.2254 Google Scholar
  34. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  35. Montes de Oca I (1995) Geografía y clima de Bolivia (Geography and climate of Bolivia). Bull Inst Fr Etud Andines 24:357–368Google Scholar
  36. Müller and Ambrizzi (2007) Teleconnection patterns and Rossby wave propagation associated to generalized frosts over southern South America. Clim Dyn 29:633–645. doi: 10.1007/s00382-007-0253-x CrossRefGoogle Scholar
  37. Müller GV, Nuñes MN, Selucci ME (2000) Relationship between ENSO cycles and frosts events within the Pampa Húmeda region. Int J Climatol 20:1619–1637CrossRefGoogle Scholar
  38. Müller GV, Compagnucci RH, Nuñez MN, Salles MA (2003) Surface circulation associated with frost in the wet Pampas. Int J Climatol 23:943–961CrossRefGoogle Scholar
  39. Myers VA (1964) A cold front invasion of southern Venezuela. Mon Weather Rev 92:513–521CrossRefGoogle Scholar
  40. Oliveira AS, Nobre CA (1986) Meridional penetration of frontal systems in South America and its relation to organized convection in the Amazon. Publication INPE-3407-PRE/676Google Scholar
  41. Parmenter F (1976) A Southern Hemisphere cold front passage at the equator. Bull Am Meteorol Soc 57:1435–1440CrossRefGoogle Scholar
  42. Penalba OC, Bettolli ML, Vargas WM (2007) The impact of climate variability on soybean yields in Argentina. Multivariate regression. Meteorol Appl 14:3–14Google Scholar
  43. Pezza AB, Ambrizzi T (2005) Dynamical conditions and synoptic tracks associated with different types of cold surge over tropical South America. Int J Climatol 25:215–241CrossRefGoogle Scholar
  44. Poveda G, Waylen P, Pulwarty R (2006) Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr Palaeoclimatol Palaeoecol 234:3–27CrossRefGoogle Scholar
  45. Quispe N (2005) Condiciones sinópticas de la incursión de una masa de aire frío en Sudamérica y su impacto en los cultivos de la selva caso especifico: Verano de 1996 e Invierno de 2000. Tesis UNALM, Ing. Meteorólogo. Lima Peru, 134 ppGoogle Scholar
  46. Quispe N (2010) Estructura dinámica de una baja fría. Rev Peruana Geo-Atmosférica 1:125–133Google Scholar
  47. Richardson AJ, Risien C, Shillington FA (2003) Using self-organizing maps to identify patterns in satellite imagery. Progress Oceanogr 59(2–3):223–239, ISSN 0079-6611Google Scholar
  48. Ronchail J (1989a) Advections Polaires en Bolivie: mise en évidence et caractérisation des effets climatiques. Hydrol Cont 4:49–56Google Scholar
  49. Ronchail J (1989b) Climatological winter effects of southern advections in Bolivia and north-west Brazil (1973–1984). Paper read at third international conference on southern hemisphere meteorology and oceanography: [extended abstracts]: November 13–17, 1989, Buenos Aires, ArgentinaGoogle Scholar
  50. Rusticucci M, Vargas W (1995) Synoptic situations related to spells of extreme temperatures over Argentina. Meteorol Appl 2:291–300CrossRefGoogle Scholar
  51. Satyamurty P, Nobre CA, Silva Dias PL (1998) Tropics—South America. In: Karoly DJ, Vincent DG (Org.) Meteorology and hydrology of the Southern Hemisphere. Meteorology Monograph, Boston vol 49, pp 119–139Google Scholar
  52. Seluchi M, Marengo J (2000) Tropical-midlatitude exchange of air masses during summer and winter in South America: climatic aspects and examples of intense events. Int J Climatol 20:10–20CrossRefGoogle Scholar
  53. Seluchi M, Calbete N, Rozante J (2001) Análisis de un desarrollo ciclónico en la costa oriental de América del sur. Revista Brasilera de Meteorología 16:151–165Google Scholar
  54. Seluchi M, Garreaud R, Saulo FA, Norte AC (2006) Influence of the Subtropical Andes on Baroclinic Disturbances: a Cold Front Case Study. Mon Weather Rev 134:3317–3335. doi: 10.1175/MWR3247.1 CrossRefGoogle Scholar
  55. Solman S, Menéndez C (2003) Weather regimes in the South American sector and neighbouring oceans during winter. Clim Dyn 21:91–104CrossRefGoogle Scholar
  56. Uppala SM et al (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  57. Vera CS, Vigliarolo PK (2000) A diagnostic study of cold–air outbreaks over South America. Mon Weather Rev 128:3–24CrossRefGoogle Scholar
  58. Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochin D, Gutzler D, Lettenmaier D, Marengo J, Mechoso C, Nogues-Paegle J, Silva Diaz P-L, Zhang C (2006) Towards a unified view of the American monsoon system. J Clim 19:4977–5000CrossRefGoogle Scholar
  59. Wang H, Fu R (2004) Influence of cross-Andes flow on the South American low-level jet. J Clim 17:1247–1262CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jhan Carlo Espinoza
    • 1
  • Josyane Ronchail
    • 2
  • Matthieu Lengaigne
    • 3
  • Nelson Quispe
    • 4
  • Yamina Silva
    • 1
  • Maria Laura Bettolli
    • 5
  • Grinia Avalos
    • 4
  • Alan Llacza
    • 4
  1. 1.Instituto Geofísico del Perú (IGP)Lima 03Peru
  2. 2.Sorbonne Paris Cité and Laboratoire d’Océanographie et de Climat: Expérimentation et Approches Numériques (LOCEAN)Univ Paris DiderotParisFrance
  3. 3.Institut de Recherche pour le Développement (IRD) and LOCEANParisFrance
  4. 4.Servicio Nacional de Meteorología e Hidrología (SENAMHI)LimaPeru
  5. 5.Departamento de Ciencias de la Atmósfera y los Océanos (FCEN)Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations