Climate Dynamics

, Volume 41, Issue 7–8, pp 1731–1748 | Cite as

Development and validation of a regional coupled atmosphere lake model for the Caspian Sea Basin

  • Ufuk Utku TuruncogluEmail author
  • Nellie Elguindi
  • Filippo Giorgi
  • Nicolas Fournier
  • Graziano Giuliani


We present a validation analysis of a regional climate model coupled to a distributed one dimensional (1D) lake model for the Caspian Sea Basin. Two model grid spacings are tested, 50 and 20 km, the simulation period is 1989–2008 and the lateral boundary conditions are from the ERA-Interim reanalysis of observations. The model is validated against atmospheric as well as lake variables. The model performance in reproducing precipitation and temperature mean seasonal climatology, seasonal cycles and interannual variability is generally good, with the model results being mostly within the observational uncertainty range. The model appears to overestimate cloudiness and underestimate surface radiation, although a large observational uncertainty is found in these variables. The 1D distributed lake model (run at each grid point of the lake area) reproduces the observed lake-average sea surface temperature (SST), although differences compared to observations are found in the spatial structure of the SST, most likely as a result of the absence of 3 dimensional lake water circulations. The evolution of lake ice cover and near surface wind over the lake area is also reproduced by the model reasonably well. Improvements resulting from the increase of resolution from 50 to 20 km are most significant in the lake model. Overall the performance of the coupled regional climate—1D lake model system appears to be of sufficient quality for application to climate change scenario simulations over the Caspian Sea Basin.


Regional climate model Lake model Caspian Sea Model validation 



The authors wish to acknowledge advice and support from North Caspian Production Operations Company B.V., and in particular Paul Verlaan, in the development of the Regional Climate model for the Caspian Sea Basin and provision of weather station data to validate the model.


  1. Arpe K, Leroy SA (2007) The caspian sea level forced by the atmospheric circulation, as observed and modelled. Quat Int 173–174:144–152. doi: 10.1016/j.quaint.2007.03.008 CrossRefGoogle Scholar
  2. Arpe K, Bengtsson L, Golitsyn GS, Mokhov II, Semenov VA, Sporyshev PV (2000) Connection between Caspian Sea level variability and ENSO. Geophys Res Lett 27(17): 2693–2696CrossRefGoogle Scholar
  3. Atlas R, Hoffman RN, Bloom SC, Jusem JC, Ardizzone J (1996) A multiyear global surface wind velocity dataset using SSM/I wind observations. Bull Am Meteorol Soc 77(5):869–882. doi: 10.1175/1520-0477 CrossRefGoogle Scholar
  4. Dickinson RE, Henderson-Sellers A, Kennedy P (1993) Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. Technical Report, National Center for Atmospheric Research Tech Note NCAR.TN-387+STR, NCAR, Boulder, COGoogle Scholar
  5. Elguindi N, Giorgi F (2006) Simulating multi-decadal variability of Caspian Sea level changes using regional climate model outputs. Clim Dyn 26(2):167–181. doi: 10.1007/s00382-005-0077-5 CrossRefGoogle Scholar
  6. Elguindi N, Giorgi F (2006) Projected changes in the Caspian Sea level for the 21st century based on the latest AOGCM simulations. Geophys Res Lett 33(L08706):4. doi: 10.1029/2006GL025943 Google Scholar
  7. Elguindi N, Giorgi F (2007) Simulating future Caspian Sea level changes using regional climate model outputs. Clim Dyn 28(4):365–379. doi: 10.1007/s00382-006-0185-x CrossRefGoogle Scholar
  8. Elguindi N, Somot S, Déqué M, Ludwig W (2011) Climate change evolution of the hydrological balance of the Mediterranean, Black and Caspian Seas: impact of climate model resolution. Clim Dyn 36(1):205–228. doi: 10.1007/s00382-009-0715-4 CrossRefGoogle Scholar
  9. Fournier N, Stammes P, Acarreta JR, Eskes H, Piters A, Hess M, von Bargen A, Kokhanovsky A, Grzegorski M (2004) SCIAMACHY Cloud Product Validation. In: Second workshop on the atmospheric chemistry validation of ENVISAT (ACVE-2), ESA Special Publication SP-562, May 3–7, 2004, Frascati, ItalyGoogle Scholar
  10. Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res 104:6335–6352. doi: 10.1029/98JD02072 CrossRefGoogle Scholar
  11. Giorgi F, Marinucci MR, Bates GT (1993) Development of a second-generation regional climate model (RegCM2). Part I: boundary-layer and radiative transfer processes. Mon Weather Rev 121(10):2794–2813. doi: 10.1175/1520-0493(1993)121<2794:DOASGR>2.0.CO;2 CrossRefGoogle Scholar
  12. Giorgi F, Marinucci MR, Bates GT (1993) Development of a second-generation regional climate model (RegCM2). Part II: convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121(10):2814–2832. doi: 10.1175/1520-0493(1993)121<2814:DOASGR>2.0.CO;2 CrossRefGoogle Scholar
  13. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Guttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. doi: 10.3354/cr01018 CrossRefGoogle Scholar
  14. Golitsyn GS, Meleshko V, Mesherskaia A, Mokhov I, Pavlova T, Galin V, Senatorsky A (1995) GCM simulation of water and heat balance over the Caspian Sea and the adjacent watershed (Diagnostic Subproject 24). In: First international AMIP scientific conference, Monterey, CaliforniaGoogle Scholar
  15. Grell GA (1993) Prognostic evaluation of assumptions used by Cumulus parameterizations. Mon Weather Rev 121(3):764–787. doi: 10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2 CrossRefGoogle Scholar
  16. Holtslag AAM, De Bruin V, Pan HL (1990) A high resolution air mass transformation model for short range weather forecasting. Mon Weather Rev 118(8):1561–1575. doi: 10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2
  17. Hostetler SW, Bates GT, Giorgi F (1993) Interactive coupling of a lake thermal model with a regional climate model. J Geophys Res 98(D3):5045–5057. doi: 10.1029/92JD02843 CrossRefGoogle Scholar
  18. Ibrayev RA, Sarkisyan AS, Trukhchev DI (2001) Seasonal variability of the circulation of the Caspian Sea reconstructed from normal hydrological data. Izv Atmos Ocean Phys 37(1):103–111Google Scholar
  19. Ibrayev RA, Ozsoy E, Schrum C, Sur HI (2010) Seasonal variability of the Caspian Sea three-dimensional circulation, sea level and air-sea interaction. Ocean Sci 6:311–329CrossRefGoogle Scholar
  20. Kiehl J, Hack J, Bonan G, Boville B, Briegleb B, Williamson D, Rasch P (1996) Description of the NCAR community climate model (CCM3). Technical report TN-420+STR, NCARGoogle Scholar
  21. MacCallum SN, Merchant CJ (2011) ARC-lake validation report. Technical report v1.0. School of GeoSciences, The University of EdinburghGoogle Scholar
  22. New M, Hulme M, Jones P (2000) Representing twentieth-century spacetime climate variability. Part II: development of 190196 monthly grids of terrestrial surface climate. J Clim 13(13):2217–2238CrossRefGoogle Scholar
  23. Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105(D24):29579–29594. doi: 10.1029/2000JD900415 CrossRefGoogle Scholar
  24. Patterson JC, Hamblin PF (1988) Thermal simulation of a lake with winter ice cover. Limnol Oceanogr 33:323–338CrossRefGoogle Scholar
  25. Rodionov S (1994) Global and regional climate interaction: the Caspian Sea experience. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  26. Rossow WB, Duenas E (2004) The International satellite cloud climatology project (ISCCP) web site: an online resource for research. Bull Am Meteorol Soc 85:167–172. doi: 10.1175/BAMS-85-2-167 CrossRefGoogle Scholar
  27. Small EE, Sloan LC, Hosteller S, Giorgi F (1999) Simulating the water balance of the Aral Sea with a coupled regional climate-lake model. J Geophys Res 104(D6):6583–6602. doi: 10.1029/98JD02348 CrossRefGoogle Scholar
  28. Tuinder ONE, de Winter-Sorkina R, Builtjes PJH (2004) Retrieval methods of effective cloud cover from the GOME instrument: an intercomparison. Atmos Chem Phys 4(1):255–273. doi: 10.5194/acp-4-255-2004 CrossRefGoogle Scholar
  29. Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Towards a climate adapt assimilation system: status update of ERA-Interim. ECMWF Newsl 115:12–18Google Scholar
  30. Wang P, Stammes P, van der AR , Pinardi G, van Roozendael M (2008) FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals. Atmos Chem Phys 8(21):6565–6576. doi: 10.5194/acp-8-6565-2008
  31. Yu L, Jin X, Weller RA (2008) Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Technical Report. OA-2008-01, 64 pp. Woods Hole, MassachusettsGoogle Scholar
  32. Zhang HM, Bates JJ, Reynolds RW (2006) Assessment of composite global sampling: sea surface wind speed. Atmos Geophys Res Lett 33(L17714):1–5. doi: 10.1029/2006GL027086 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ufuk Utku Turuncoglu
    • 1
    Email author
  • Nellie Elguindi
    • 1
  • Filippo Giorgi
    • 1
  • Nicolas Fournier
    • 2
  • Graziano Giuliani
    • 1
  1. 1.Earth System Physics SectionInternational Centre for Theoretical PhysicsTriesteItaly
  2. 2.Shell Global Solutions International B.V.RijswijkThe Netherlands

Personalised recommendations