Climate Dynamics

, Volume 41, Issue 5–6, pp 1419–1437 | Cite as

Climate variability and trends in downscaled high-resolution simulations and projections over Metropolitan France

  • Robert Vautard
  • Thomas Noël
  • Laurent Li
  • Mathieu Vrac
  • Eric Martin
  • Philippe Dandin
  • Julien Cattiaux
  • Sylvie Joussaume


In order to fulfill the society demand for climate information at the spatial scale allowing impact studies, long-term high-resolution climate simulations are produced, over an area covering metropolitan France. One of the major goals of this article is to investigate whether such simulations appropriately simulate the spatial and temporal variability of the current climate, using two simulation chains. These start from the global IPSL-CM4 climate model, using two regional models (LMDz and MM5) at moderate resolution (15–20 km), followed with a statistical downscaling method in order to reach a target resolution of 8 km. The statistical downscaling technique includes a non-parametric method that corrects the distribution by using high-resolution analyses over France. First the uncorrected simulations are evaluated against a set of high-resolution analyses, with a focus on temperature and precipitation. Uncorrected downscaled temperatures suffer from a cold bias that is present in the global model as well. Precipitations biases have a season- and model-dependent behavior. Dynamical models overestimate rainfall but with different patterns and amplitude, but both have underestimations in the South-Eastern area (Cevennes mountains) in winter. A variance decomposition shows that uncorrected simulations fairly well capture observed variances from inter-annual to high-frequency intra-seasonal time scales. After correction, distributions match with analyses by construction, but it is shown that spatial coherence, persistence properties of warm, cold and dry episodes also match to a certain extent. Another aim of the article is to describe the changes for future climate obtained using these simulations under Scenario A1B. Results are presented on the changes between current and mid-term future (2021–2050) averages and variability over France. Interestingly, even though the same global climate model is used at the boundaries, regional climate change responses from the two models significantly differ.



Global climate projections were carried out within the framework of the WCRP/CMIP3 project. The projections and downstream downscaling analyses were supported by the DRIAS project of the French Ecology Ministry programme “Gestion des Risques du Changement Climatique”.


  1. Abatzoglou JT, Brown TJ (2011) A comparison of statistical downscaling methods suited for wildfire applications. Int J Climatol. doi: 10.1002/joc.2312
  2. Blackmon ML (1976) A climatological spectral study of the 500-mb geopotential height of the Northern Hemisphere wintertime circulation. J Atmos Sci 33:1607–1623CrossRefGoogle Scholar
  3. Boé J, Terray L (2008) A weather-type approach to analyzing winter precipitation in France: Twentieth-century trends and the role of anthropogenic forcing. J Clim 21:3118. doi: 10.1175/2007JCLI1796.1 CrossRefGoogle Scholar
  4. Busuioc A, Tomozeiu R, Cacciamani C (2008) Statistical downscaling model based on canonical correlation analysis for winter extreme precipitation events in the Emilia-Romania region. Int J Clim 28:449–464CrossRefGoogle Scholar
  5. Cannon AJ, Whitfield PH (2002) Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models. J Hydrol 259:136–151CrossRefGoogle Scholar
  6. Carreau J, Vrac M (2011) Stochastic downscaling of precipitation with neural network conditional mixture models. Water Resour Res 47:W10502. doi: 10.1029/2010WR010128 CrossRefGoogle Scholar
  7. Cattiaux J, Quesada B, Arakelian A, Cordon F, Vautard R, Yiou P (2012) North-Atlantic dynamics and European temperature extremes in the IPSL model: sensitivity to atmospheric resolution. Clim Dyn (submitted)Google Scholar
  8. Chen W, Jiang Z, Li L, Yiou P (2011) Simulation of regional climate change under the IPCC A2 scenario in southeast China. Clim Dyn 36:491–507CrossRefGoogle Scholar
  9. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate during this century. Clim Change. doi: 10.1007/s10584-006-9210-7 Google Scholar
  10. Colette A, Vautard R, Vrac M (2012) Regional climate downscaling with prior statistical correction of the global climate forcing. Accep Geophys Res LettGoogle Scholar
  11. Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values, Global Planet. Change 57:16–26Google Scholar
  12. Déqué M, Jones RG, Wild M, Giorgi F, Christensen JH, Hassell DC, Vidale PL, Rockel B, Jacob D, Kjellström E, de. Castro M, Kucharski F, van den Hurk B (2005) Global high resolution versus Limited Area Model climate change projections over Europe: quantifying confidence level from PRUDENCE results. Clim Dyn 25. doi: 10.1007/s00382-005-0052-1
  13. Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, de. Castro M, Kucharski F, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81. doi: 10.1007/s10584-006-9228-x
  14. Dudhia J (1993) A non-hydrostatic version of the Penn State–NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front. Mon Weather Rev 121:1493–1513CrossRefGoogle Scholar
  15. Durand Y, Brun E, Mérindol L, Guyomarc’h G, Lesaffre B, Martin E (1993) A meteorological estimation of relevant parameters for snow models. Ann Claciol 18:65–71Google Scholar
  16. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 108(D22):8851. doi: 10.1029/2002JD003296 Google Scholar
  17. Fernandez J, Montavez JP, Saenz J, Gonzales-Rouco JF, Zorita E (2007) Sensitivity of the MM5 mesoscale model to physical parameterizations for regional climate studies: annual cycle. J Geophys Res 112:D04101. doi: 10.1029/2005JD006649 CrossRefGoogle Scholar
  18. Fischer EM, Schär C (2010) Consistent geographical patterns of change in high-impact European heatwaves. Nat Geosci. doi: 10.1038/NGEO866 Google Scholar
  19. Fowler HJ, Cooley D, Sain SR, Thurston M (2010) Detecting change in UK extreme precipitation using results from the bbc climate change experiment. Extremes 13:241–267. doi: 10.1007/s10687-010-0101-y CrossRefGoogle Scholar
  20. Ghosh S, Mujumdar PP (2008) Statistical downscaling of GCM simulations to streamflow using relevance vector machine. Adv Water Resour 31:132–146CrossRefGoogle Scholar
  21. Goubanova K, Li L (2007) Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Glob Planet Change 57:27–42CrossRefGoogle Scholar
  22. Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29:1693. doi: 10.1029/2002GL015311 CrossRefGoogle Scholar
  23. Haddad ZS, Rosenfeld D (1997) Optimality of empirical z-r relations. Q J R Meteorol Soc 123:1283–1293CrossRefGoogle Scholar
  24. Hong S-Y, Pan H-L (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Wea Rev 124:2322–2339CrossRefGoogle Scholar
  25. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne J, Fairhead L, Filiberti M, Friedlingstein P, Grandpeix J, Krinner G, Levan P, Li Z, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parameterized physics with emphasis on tropical convection. Clim Dyn 27:787–813CrossRefGoogle Scholar
  26. Huth R (2001) Disaggregating climatic trends by classification of circulation patterns. Int J Climatol 21:135–153CrossRefGoogle Scholar
  27. Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sánchez E, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An intercomparison of regional climate models for Europe: model performance in present-day climate. Clim Change. doi: 10.1007/s10584-006-9213-4 Google Scholar
  28. Kallache M, Vrac M, Naveau P, Michelangeli P-A (2011) Non-stationary probabilistic downscaling of extreme precipitation. J Geophys Res Atmos 116:D05113. doi: 10.1029/2010JD014892 CrossRefGoogle Scholar
  29. Kjellström E, Bärring L, Jacob D, Jones R, Lenderink G, Schär C (2007) Modeling daily temperature extremes: recent climate and future changes over Europe. Clim Change. doi: 10.1007/s10584-006-9220-5 Google Scholar
  30. Kjellström E, Boberg F, Castro M, Christensen JH, Nikulin G, Sanchez E (2010) Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. Clim Res 44:135–150Google Scholar
  31. Lacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113:D13103. doi: 10.1029/2008JD009944 CrossRefGoogle Scholar
  32. Laprise R (2008) Regional climate modelling. J Comput Phys 227:3641–3666CrossRefGoogle Scholar
  33. Lavaysse C, Vrac M, Drobinski P, Lengaigne M, Vischel T (2012) Statistical downscaling of the French Mediterranean climate: assessment for present and projection in an anthropogenic scenario. Nat Hazards Earth Syst Sci 12:651–670. doi: doi:10.5194/nhess-12-651-2012
  34. Lemond J, Dandin P, Planton S, Vautard R, Pagé C, Déqué M, Franchistéguy L, Geindre S, Kerdoncuff M, Li L, Moisselin JM, Noël T, Tourre YM (2011) DRIAS—a step toward french climate services. Adv Sci Res 6:179–186CrossRefGoogle Scholar
  35. Li ZX (1999) Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J Clim 12:986–1001CrossRefGoogle Scholar
  36. Li G, Zhang X, Zwiers F, Wen QH (2012) Quantification of uncertainty in high-resolution temperature scenarios for North America. J Clim 25:3373–3389CrossRefGoogle Scholar
  37. Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48(3):RG3003CrossRefGoogle Scholar
  38. Marti O, Braconnot P, Dufresne JL, Belier J, Benshila R, Bony S, Brockman P, Cadule P, Caubel A, Codron F, de Noblet N, Denvil S, Fairhead L, Fichefet T, Foujols M-A, Friedlingstein P, Goosse H, Grandpeix J-Y, Guilyardi E, Hourdin F, Idelkadi A, Kageyama M, Krinner G, Levy C, Madec G, Mignot J, Musat I, Swingedouw D, Talandier C (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34:1–26CrossRefGoogle Scholar
  39. Maurer EP, Hidalgo HG, Das T, Dettinger MD, Cayan DR (2010) The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol Earth Syst Sci 14:1125–1138. doi: 10.5194/hess-14-1125-2010 CrossRefGoogle Scholar
  40. Menut L, Tripathi OP, Colette A, Vautard R, Flaounas E, Bessagnet B (2012) Evaluation of regional climate simulations for air quality modelling purposes. Clim Dyn (in press)Google Scholar
  41. Michelangeli P-A, Vrac M, Loukos H (2009) Probabilistic downscaling approaches: Application to wind cumulative distribution function. Geophys Res Lett 36Google Scholar
  42. Nikulin G, Kjellström E, Hansson U, Jones C, Strandberg G, Ullerstig A (2011) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus 63A:41–55Google Scholar
  43. Oettli P, Sultan B, Baron C, Vrac M (2011) Are regional climate models relevant for crop yield prediction in West Africa? Environ Res Lett 6:014008. doi: 10.1088/1748-9326/6/1/014008 CrossRefGoogle Scholar
  44. Panofsky HA, Brier GW (1958) Some applications of statistics to meteorology. Penn. State Univ Press, University ParkGoogle Scholar
  45. Quintana-Seguí P, Le Moigne P, Durand Y, Martin E, Habets F, Baillon M, Canellas C, Franchisteguy L, Morel S (2008) Analysis of near-surface atmospheric variables: validation of the SAFRAN analysis over France. J Appl Meteorol Climatol 47:92–107CrossRefGoogle Scholar
  46. Reisner J, Rasmussen RM, Bruintjes RT (1998) Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart J Roy Meteorol Soc 124 B:1071–1107CrossRefGoogle Scholar
  47. Ritter B, Geleyn J-F, (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Wea Rev 120:303–325Google Scholar
  48. Rummukainen M (2010) State-of-the-art with regional climate models. WIRE (Wiley Interdisciplinary Reviews: Climate Change) Adv Rev 1(1):82–96Google Scholar
  49. Salameh T, Drobinski P, Vrac M, Naveau P (2009) Statistical downscaling of near-surface wind over complex terrain in Southern France. Metetorol Atmos Phys 103:243–256Google Scholar
  50. Troin M, Vrac M, Khodri M, Vallet-Coulomb C, Piovano E, Sylvestre F (2010) Coupling statistically downscaled GCM outputs with a basin-lake hydrological model in subtropical South America: evaluation of the influence of large-scale precipitation changes on regional hydroclimate variability. Hydrol Earth Syst Sci Discuss 7: 1–44. doi: 10.5194/hessd-7-1-2010 Google Scholar
  51. Vidal J-P, Martin E, Franchisteguy L, Baillon M, Soubeyrou J-M (2010) A 50-year high-resolution reanalysis over France with the SAFRAN system. Int J Climatol 30:1627. doi: 10.1002/joc.2003 CrossRefGoogle Scholar
  52. Vidal J-P, Martin E, Kitova N, Najac J, Soubeyroux J-M (2012) Evolution of spatio-temporal drought characteristics: validation, projections and effect of adaptation scenarios. Hydrol Earth Syst Sci 16:1–21CrossRefGoogle Scholar
  53. Vigaud N, Vrac M, Caballero Y (2012) Probabilistic downscaling of GCM scenarios over southern India. Int J Climatol. doi: 10.1002/joc.3509
  54. Voisin N, Schaake JC, Lettenmaier DP (2010) Calibration and downscaling methods for quantitative ensemble precipitation forecasts. Wea Forecasting 25:1603–1627. doi: 10.1175/2010WAF2222367.1 CrossRefGoogle Scholar
  55. Vrac M, Drobinski P, Merlo A, Herrmann M, Lavaysse C, Li L, Somot S (2012) Dynamical and statistical downscaling of the French Mediterranean climate: uncertainty assessment. Nat Hazards Earth Syst Sci 12: 2769–2784. doi: 10.5194/nhess-12-2769-2012
  56. Wilby RL, Dawson CW, Barrow EM (2002) SDSM—a decision support tool for the assessment of regional climate change impacts. Environ Modell Softw 17:145–157CrossRefGoogle Scholar
  57. Wilks DS, Wilby RL (1999) The weather generation game: a review of stochastic weather models. Prog Phys Geogr 23:329–357Google Scholar
  58. Wood AW, Maurer EP, Kumar A, Lettenmaier DP (2002) Long-range experimental hydrologic forecasting for the eastern United States. J Geophys Res 107:4429. doi: 10.1029/2001JD000659 CrossRefGoogle Scholar
  59. Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 62:189–216CrossRefGoogle Scholar
  60. Yang C, Chandler RE, Isham VS (2005) Spatial-temporal rainfall simulation using generalized linear models. Water Resour Res 41:W11415. doi: 10.1029/2004WR003739 Google Scholar
  61. Yoon J-H, Mo K, Wood EF (2012) Dynamic-model-based seasonal prediction of meteorological drought over the contiguous United States. J Hydrometeor 13:463–482CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Vautard
    • 1
  • Thomas Noël
    • 2
  • Laurent Li
    • 3
  • Mathieu Vrac
    • 1
  • Eric Martin
    • 4
  • Philippe Dandin
    • 5
  • Julien Cattiaux
    • 1
    • 4
  • Sylvie Joussaume
    • 1
  1. 1.Laboratoire CEA/CNRS/UVSQLSCE/IPSLGif-sur-YvetteFrance
  2. 2.Institut Pierre-Simon LaplaceParisFrance
  3. 3.Laboratoire de Météorologie DynamiqueParisFrance
  4. 4.CNRM/GAME (Météo-France, CNRS)URA 1357ToulouseFrance
  5. 5.Météo-France, Direction de la ClimatologieToulouseFrance

Personalised recommendations