Climate Dynamics

, Volume 41, Issue 7–8, pp 2179–2197 | Cite as

The South Pacific Convergence Zone in CMIP5 simulations of historical and future climate

  • Josephine R. Brown
  • Aurel F. Moise
  • Robert A. Colman
Article

Abstract

The South Pacific Convergence Zone (SPCZ) is evaluated in historical simulations from 26 Coupled Model Intercomparison Project Phase 5 (CMIP5) models, and compared with previous generation CMIP3 models. A subset of 24 CMIP5 models are able to simulate a distinct SPCZ in the December to February (DJF) austral summer, although the position of the SPCZ in these models is too zonal compared with observations. The spatial pattern of SPCZ precipitation is improved in CMIP5 models relative to CMIP3 models, although the spurious double ITCZ precipitation band in the eastern Pacific is intensified in many CMIP5 models. All CMIP5 models examined capture some interannual variability of SPCZ latitude, and 19 models simulate a realistic correlation with El Niño–Southern Oscillation. In simulations of the twenty-first century under the RCP8.5 emission scenario, no consistent shift in the mean position of the DJF SPCZ is identified. Several models simulate significant shifts northward, and a similar number of models simulate significant southward shifts. The majority of CMIP5 models simulate an increase in mean DJF SPCZ precipitation, and there is an intensification of the eastern Pacific double ITCZ precipitation band in many models. Most models simulate regions of increased precipitation in the western part of the SPCZ and near the equator, and regions of decreased precipitation at the eastern edge of the SPCZ. Decomposition of SPCZ precipitation changes into dynamic and thermodynamic components reveals predominantly increased precipitation due to thermodynamic changes, while dynamic changes lead to regions of both positive and negative precipitation anomalies.

Keywords

South Pacific Convergence Zone (SPCZ) Climate change General circulation model Tropical climate 

Supplementary material

382_2012_1591_MOESM1_ESM.doc (996 kb)
Supplementary material 1 (DOC 996 kb)

References

  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  2. Australian Bureau of Meteorology and CSIRO (2011) Climate change in the pacific: scientific assessment and new research. Volume 1: regional overview. CSIRO Publishing, MelbourneGoogle Scholar
  3. Bellucci A, Gualdi S, Navarra A (2010) The double-ITCZ syndrome in coupled general circulation models: the role of large-scale vertical circulation regimes. J Clim 23:1127–1145CrossRefGoogle Scholar
  4. Bony S, Dufresne J-L, Le Treut H, Morcrette J-J, Senior C (2004) On dynamic and thermodynamic components of cloud changes. Clim Dyn 22:71–86CrossRefGoogle Scholar
  5. Brown JR, Power SB, Delage FP, Colman RA, Moise AF, Murphy BF (2011) Evaluation of the South Pacific Convergence Zone in IPCC AR4 climate model simulations of the 20th century. J Clim 24:1565–1582CrossRefGoogle Scholar
  6. Brown JN, Sen Gupta A, Brown JR, Muir LC, Risbey JS, Whetton, P Zhang X, Ganachaud A, Murphy B, Wijffels SE (2012) Implications of CMIP3 model biases and uncertainties for climate projections in the western tropical Pacific. Clim Chang (in press). doi:10.1007/s10584-012-0603-5
  7. Brown JR, Moise AF, Delage FP (2012) Changes in the South Pacific Convergence Zone in IPCC AR4 future climate projections. Clim Dyn 39:1–19. doi:10.1007/s00382-011-1192-0 CrossRefGoogle Scholar
  8. Cai W, Lengaigne M, Borlace S, Collins M, Cowan T, McPhaden MJ, Timmermann A, Power S, Brown JR, Menkes C, Ngari A, Vincent EM, Widlansky MJ (2012) More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature 488:365–369. doi:10.1038/nature11358 CrossRefGoogle Scholar
  9. Chou C, Neelin JD (2004) Mechanisms of global warming impacts on regional tropical precipitation. J Clim 17:2688–2701CrossRefGoogle Scholar
  10. Chou C, Neelin JD, Chen C-A, Tu J-Y (2009) Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005CrossRefGoogle Scholar
  11. de Szoeke SP, Xie S-P (2008) The double-ITCZ syndrome in coupled general circulation models: the role of large-scale vertical circulation regimes. J Clim 21:2573–2590CrossRefGoogle Scholar
  12. Emori S, Brown SJ (2005) Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys Res Lett 32:L17706. doi:10.1029/2005GL023272 CrossRefGoogle Scholar
  13. Folland CK, Renwick JA, Salinger MJ, Mullen AB (2002) Relative influence of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone. Geophys Res Lett 29:1643. doi:10.1029/2001GL014201 CrossRefGoogle Scholar
  14. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699CrossRefGoogle Scholar
  15. Jourdain NC, Marchesiello P, Menkes CE, Lefèvre J, Vincent EM, Lengaigne M, Chauvin F (2011) Mesoscale simulation of tropical cyclones in the South Pacific: climatology and interannual variability. J Clim 24:3–25. doi:10.1175/2010JCLI3559.1 CrossRefGoogle Scholar
  16. Kiladis GN, van Loon H (1988) The Southern Oscillation. Part VII: meteorological anomalies over the Indian and Pacific Ocean sectors associated with extremes of the Oscillation. Mon Weather Rev 116:120–136CrossRefGoogle Scholar
  17. Kiladis GN, von Storch H, van Loon H (1989) Origin of the South Pacific Convergence Zone. J Clim 2:1185–1195CrossRefGoogle Scholar
  18. Lin J-L (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean–atmosphere feedback analysis. J Clim 20:4497–4525CrossRefGoogle Scholar
  19. Lintner BR, Neelin JD (2008) Eastern margin variability of the South Pacific Convergence Zone. Geophys Res Lett 35:L16701. doi:10.1029/2008GL034298 CrossRefGoogle Scholar
  20. Matthews AJ (2012) A multiscale framework for the origin and variability of the South Pacific Convergence Zone. Q J R Meteorol Soc. doi:10.1002/qj.1870 Google Scholar
  21. Meehl GA (1987) The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions. Mon Weather Rev 115:27–50CrossRefGoogle Scholar
  22. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  23. Menkes CE, Lengaigne M, Marchesiello P, Jourdain NC, Vincent EM, Lefèvre J, Chauvin F, Royer J (2012) Comparison of tropical cyclogenesis indices on seasonal to interannual timescales. Clim Dyn 38:301–321. doi:10.1007/s00382-011-1126-x CrossRefGoogle Scholar
  24. Moise AF, Colman RA, Brown JR (2012) Behind uncertainties in projections of Australian tropical climate: analysis of 19 CMIP3 models. J Geophys Res 117:D10103. doi:10.1029/2011JD017365 CrossRefGoogle Scholar
  25. Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823 CrossRefGoogle Scholar
  26. Power SB, Schiller A, Cambers G, Jones D, Hennessy K (2011) The pacific climate change science program. Bull Am Meteorol Soc 92:1409–1411. doi:10.1175/BAMS-D-10-05001.1 CrossRefGoogle Scholar
  27. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670 CrossRefGoogle Scholar
  28. Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity estimates. Nat Clim Chang 2:248–253. doi:10.1038/nclimate1385 CrossRefGoogle Scholar
  29. Salinger MJ, Renwick JA, Mullan AB (2001) Interdecadal Pacific Oscillation and South Pacific Climate. Int J Clim 21:1705–1721CrossRefGoogle Scholar
  30. Seager R, Naik N, Vecchi G (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23:4651–4668CrossRefGoogle Scholar
  31. Seager R, Naik N, Vogel L (2012) Does global warming cause intensified interannual hydroclimate variability? J Clim 25:3355–3372CrossRefGoogle Scholar
  32. Streten N (1973) Some characteristics of satellite-observed bands of persistent cloudiness over the Southern Hemisphere. Mon Weather Rev 6:486–495CrossRefGoogle Scholar
  33. Takahashi K, Battisti DS (2007a) Processes controlling the mean tropical Pacific precipitation pattern. Part I: the Andes and the eastern Pacific ITCZ. J Clim 20:3434–3450CrossRefGoogle Scholar
  34. Takahashi K, Battisti DS (2007b) Processes controlling the mean tropical Pacific precipitation pattern. Part II: the SPCZ and the southeast Pacific dry zone. J Clim 20:5696–5706CrossRefGoogle Scholar
  35. Taylor KE, Stouffer RJ, Meehl GA (2012) An Overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  36. Trenberth KE (1976) Spatial and temporal variations of the Southern Oscillation. Q J R Meteorol Soc 102:639–653CrossRefGoogle Scholar
  37. van Vuuren DP et al (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31. doi:10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  38. Vincent DG (1994) The South Pacific Convergence Zone (SPCZ): a review. Mon Weather Rev 122:1949–1970CrossRefGoogle Scholar
  39. Vincent EM, Lengaigne M, Menkes CE, Jourdain NC, Marchesiello P, Madec G (2011) Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis. Clim Dyn 36:1881–1896. doi:10.1007/s00382-009-0716-3 CrossRefGoogle Scholar
  40. Widlansky MJ, Webster PJ, Hoyos CD (2011) On the location and orientation of the South Pacific Convergence Zone. Clim Dyn 36:561–578. doi:10.1007/s00382-0871-6 CrossRefGoogle Scholar
  41. Wittenberg AT, Rosati A, Lau N-C, Ploshay JJ (2006) GFDL’s CM2 global climate models. Part III: tropical Pacific climate and ENSO. J Clim 19:698–722CrossRefGoogle Scholar
  42. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558CrossRefGoogle Scholar
  43. Zhang X, Lin W, Zhang M (2007) Toward understanding the double Intertropical Convergence Zone pathology in coupled ocean–atmosphere general circulation models. J Geophys Res 112:D12102. doi:10.1029/2006JD007878 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Josephine R. Brown
    • 1
  • Aurel F. Moise
    • 1
  • Robert A. Colman
    • 1
  1. 1.Centre for Australian Weather and Climate Research, Bureau of MeteorologyMelbourneAustralia

Personalised recommendations