Climate Dynamics

, Volume 42, Issue 1–2, pp 237–252 | Cite as

The meso-scale drivers of temperature extremes in high-latitude Fennoscandia

  • Juha AaltoEmail author
  • Peter C. le Roux
  • Miska Luoto


Extreme temperatures are key drivers controlling both biotic and abiotic processes, and may be strongly modified by topography and land cover. We modelled mean and extreme temperatures in northern Fennoscandia by combining digital elevation and land cover data with climate observations from northern Finland, Norway and Sweden. Multivariate partitioning technique was utilized to investigate the relative importance of environmental variables for the variation of the three temperature parameters: mean annual absolute minima and maxima, and mean annual temperature. Generalized additive modeling showed good performance, explaining 84–95 % of the temperature variation. The inclusion of remotely sensed variables improved significantly the modelling of thermal extremes in this system. The water cover variables and topography were the most important drivers of minimum temperatures, whereas elevation was the most important factor controlling maximum temperatures. The spatial variability of mean temperatures was clearly driven by geographical location and the effects of topography. Partitioning technique gave novel insights into temperature-environment relationship at the meso-scale and thus proved to be useful tool for the study of the extreme temperatures in the high-latitude setting.


Subarctic Fennoscandia Extreme temperatures Variation partitioning Generalized additive models 



We wish to acknowledge Pentti Pirinen who provided assistance with the climate data base of Finnish Meteorological Institute. We also thank two anonymous reviewers for their constructive and valuable comments on the manuscript. This study was funded by the Geography Graduate School.


  1. Abisko Scientific Research Station (2012)
  2. ACIA (2005) Arctic climate impact assessment. Cambridge University Press, Cambridge, p 1040Google Scholar
  3. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  4. Anderson M, Gribble N (1998) Partitioning the variation among spatial, temporal and environmental components in a multivariate data set. Aust J Ecol 23:158–167CrossRefGoogle Scholar
  5. Atkinson D, Gajewski K (2002) High-resolution estimation of summer surface air temperature in the canadian arctic archipelago. J Clim 15:3601–3614CrossRefGoogle Scholar
  6. Autio J, Heikkinen O (2002) The climate of northern Finland. Fennia 180(1–2):61–66Google Scholar
  7. Betrie G, Mohamed Y, van Griensven A, Srinivasan R (2011) Sediment management modelling in the Blue Nile Basin using SWAT model. Hydrol Earth Syst Sci 15:807–818CrossRefGoogle Scholar
  8. Billings W, Bliss L (1959) An alpine snowbank environment and its effects on vegetation, plant deveploment, and productivity. Ecology 40(3):388–397CrossRefGoogle Scholar
  9. Billings W, Mooney H (1968) The ecology of arctic and alpine plants. Biol Rev 43:481–529CrossRefGoogle Scholar
  10. Bootsma A (1976) Estimating minimum temperature and climatological freeze risk in hilly terrain. Agric Meteorol 16(3):425–443CrossRefGoogle Scholar
  11. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73(3):1045–1055CrossRefGoogle Scholar
  12. Bowman W, Seastedt T (2001) Structure and function of an alpine ecosystem. Oxford University Press, OxfordGoogle Scholar
  13. Brom J, Pokorný J (2009) Temperature and humidity characteristics of two willow stands, a peaty meadow and a drained pasture and their impact on landscape functioning. Boreal Environ Res 14:389–403Google Scholar
  14. Bruun H, Moen J, Virtanen R, Grytnes J, Oksanen L, Angerbjorn A (2006) Effects on altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J Veg Sci 17:37–46CrossRefGoogle Scholar
  15. Chapin F (1983) Direct and indirect effects of temperature on arctic plants. Polar Biol 2:47–52CrossRefGoogle Scholar
  16. Chapin F, McGuire A, Randerson J, Pielke sr R, Baldocchi D, Hobbie S, Roule N, Eugster W, Kasischke E, Rastetter E, Zimov S, Running S (2000) Arctic and boreal ecosystems of western North America as components of the climate system. Global Change Biol 6:211–223CrossRefGoogle Scholar
  17. Chapin F, Sturm M, Serreze M, McFadden J, Key J, Lloyd A, McGuire A, Rupp T, Lynch A, Schimel J, Beringer J, Chapman W, Epstein H, Euskirchen E, Hinzman L, Jia G, Ping C, Tape K, Thompson C, Walker D, Welker J (2005) Role of the land-surface changes in arctic summer warming. Science 310:657–660CrossRefGoogle Scholar
  18. Christensen T, Johansson T, kerman H, Mastepanov N M Malmer, Friborg T, Crill P, Svensson B (2004) Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys Res Lett 31(L04501):680. doi: 10.1029/2003GL018
  19. Clements G, Whiteman C, Horel J (2003) Cold-air-pool structure and evolution in a mountain basin: Peter Sinks, Utah. J Appl Meteorol 42:752–768CrossRefGoogle Scholar
  20. Daly C (2006) Guidelines for assessing the suitability of spatial climate data sets. Int J Clim 26:707–721CrossRefGoogle Scholar
  21. Eggelsmann R, A H, Grosse-Brauckmann G, Küster E, Naucke W, Schuch M, Schweickle V (1993) Physical processes and properties of mires. In: Heathwaite A (ed) Mires: process, exploitation and conservation. Wiley, ChichesterGoogle Scholar
  22. Eugster W, Rouse W, Pielke sr R, McFadden J, Baldocchi D, Kittel T, Chapin III F, Liston G, Vidale P, Vaganov E, Chambers S (2000) Land-atmosphere energy exchange in arctic tundra and boreal forest: available data and feedbacks to climate. Global Change Biol 6:84–115CrossRefGoogle Scholar
  23. European Environment Agency (2012) Corine Land Cover 2006 raster data.
  24. Foley J, Heil Costa M, Delire C, Ramankutty N, Snyder P (2003) Green surprise? How terrestrial ecosystems could affect earth’s climate. Front Ecol Environ 1:38–44Google Scholar
  25. Fox J (1981) Intermediate levels of soil disturbance maximize alpine plant diversity. Nature 293:564–565CrossRefGoogle Scholar
  26. French H (2007) The periglacial environment. Wiley, ChichCrossRefGoogle Scholar
  27. Fronzek S, Luoto M, Carter T (2006) Potential effect of climate change on the distribution of palsa mires in subarctic Fennoscandia. Clim Res 32:1–12CrossRefGoogle Scholar
  28. Greenland D, Losleben M (2001) Climate. In: Bowman WD, Seastedt TR (eds) Structure and function of an alpine ecosystem. Oxford University Press, OxfordGoogle Scholar
  29. Guisan A, Edwards T, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100CrossRefGoogle Scholar
  30. Hastie T, Tibshirani R (1990) Generalized additive models, monographs on statistics and applied probability, vol 43. Chapman and Hall, New YorkGoogle Scholar
  31. Haugen R, Brown J (1980) Coastal-inland distributions summer air temperature and precipitation in northern Alaska. Arct Alp Res 12(4):403–412CrossRefGoogle Scholar
  32. Heikkinen R, Luoto M, Virkkala R, Rainio K (2004) Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in a agricultural-forest mosaic. J Appl Ecol 41:824–835CrossRefGoogle Scholar
  33. Heikkinen R, Luoto M, Kuussaari M, poyry J (2005) New insights into butterfly-environment relationship using partitioning methods. Proc R Soc 272:2203–2210CrossRefGoogle Scholar
  34. Hjort J, Luoto M (2010) Geodiversity of high-latitude landscapes in northern Finland. Geomorphology 115:109–116CrossRefGoogle Scholar
  35. Holdaway M (1996) Spatial modelling and interpolation of monthly temperature using kriging. Clim Res 6:215–225CrossRefGoogle Scholar
  36. Jarvis C, Stuart N (2001) A comparison among strategies for interpolating maximum and minimum daily air temperatures. Part 1: the selection of guiding topographic and land cover variales. J Appl Meteorol 40:1060–1074CrossRefGoogle Scholar
  37. Jonasson S, Lee J, Callaghan T, Havström M, Parsons A (1996) Direct and indirect effects of increasing temperatures on subarctic ecosystems. Ecol Bull 45:180–191Google Scholar
  38. Körner C (1998) A re-assessment of high elevation treeline position and their explanation. Oecologia 115(4):445–459CrossRefGoogle Scholar
  39. Laaksonen K (1976) The dependence of mean air temperatures upon latitude and altitude in Fennoscandia (1921–1950). Ann Acad Sci Fennicae A III 119:19Google Scholar
  40. Laaksonen K (1977) The influence of sea areas upon mean air temperatures in Fennoscandia (1921–1950). Fennia 151:57–128Google Scholar
  41. Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673CrossRefGoogle Scholar
  42. Legendre P (2008) Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. Plant Ecol 1(1):3–8Google Scholar
  43. Legendre P, Dale M, Fortin M, Gurevitch J, Hohn J, Myers D (2002) The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25:601–615CrossRefGoogle Scholar
  44. Lindkvist L, Gustavsson T, Bogren J (2000) A frost assessment method for mountainous areas. Agric Meteorol 102:51–67CrossRefGoogle Scholar
  45. Livingstone D, Lotter A (1998) The relationship between air temperature and water temperatures in lakes of the Swiss Plateu: a case study with palælimnological implications. J Paleolimnol 19:181–198CrossRefGoogle Scholar
  46. Livingstone D, Lotter A, Walker I (1999) The decrease in summer water temperature with altitude in swiss alpine lakes: a comparison with air temperature lapse rates. Arct Antarct Alp Res 31(4):341–352CrossRefGoogle Scholar
  47. Luoto M, Hjort J (2006) Scale matters—a multi-resolution study of the determinants of patterned ground activity in subarctic Finland. Geomorphology 80:282–294CrossRefGoogle Scholar
  48. Mac Nally R (2002) Multiple regression and inference ecology and conservation biology: further comments on identifying important predictor variables. Biodivers Conserv 11:1397–1401CrossRefGoogle Scholar
  49. Marchand F, Kockelbergh F, Vijver B, Beyens L, Nijs I (2005) Are heat and cold resistance of arctic species affected by successive extreme temperature events? New Phytol 170:291–300CrossRefGoogle Scholar
  50. Marra G, Wood S (2011) Practical variable selection for generalized additive models. Comput Stat Data Anal 55:2372–2387CrossRefGoogle Scholar
  51. McCullagh P, Nelder J (1989) Generalized linear models, monographs on statistics and applied probability, vol 37, 2nd edn. Chapman and Hall, New YorkGoogle Scholar
  52. Mellert K, Fensterer V, Küchenhoff H, Reger B, Kölling C, Klemmt H, Ewald J (2011) Hypothesis-driven species distribution models for tree species in the Bavarian Alps. J Veg Sci 22:635–646CrossRefGoogle Scholar
  53. Norwegian Meteorological Institute (2012) eKlima.
  54. Pajunen H (2005) Mires. In: Seppälä M (ed) The physical geography of Fennoscandia. Oxford University Press, OxfordGoogle Scholar
  55. Parmesan C, Root T, Willig M (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am Meteorol Soc 81(3):443–450CrossRefGoogle Scholar
  56. Parviainen M, Luoto M (2007) Climate envelopes of mire complex types in Fennoscandia. Geogr Ann Ser A Phys Geogr 89(2):137–151CrossRefGoogle Scholar
  57. Peres-Neto P, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87(10):2614–2625CrossRefGoogle Scholar
  58. Perry M, Hollis D (2005) The generation of monthly gridded datasets for a range of climatic variables over the UK. Int J Climatol 25:1041–1054CrossRefGoogle Scholar
  59. Pike G, Pepin N, Schaefer M (2012) High latitude local scale temperature complexity: the example of kevo valley, finnish lapland. Int J Climatol. doi: 10.1002/joc.3573
  60. Pirinen P, Simola H, Aalto J, Kaukoranta JP, Karlsson P, Ruuhela R (2012) Climatological statistics of Finland 1981–2010. Finnish Meteorological Institute Reports 2012(1), pp 83Google Scholar
  61. Post E, Forchhammer M, Bret-Harte S, Callaghan T, Christensen T, Elberling B, Fox A, Gilg O, Hik D, Høye T, Ims R, Jeppesen E, Klein D, Madsen J, McGuire A, Rysgaard S, Schindler D, Stirling I, Tamstorf M, Tyler N, van der Wal R, Welker J, Wookey P, Schmidt N, Aastrup P (2009) Ecological dynamics across the arctic associated with recent climate change. Science 325:1355–1358CrossRefGoogle Scholar
  62. Rolland C (2002) Spatial and seasonal variations of air temperature lapse rates in alpine regions. J Clim 16:1032–1046CrossRefGoogle Scholar
  63. le Roux PC, Virtanen R, Heikkinen R, Luoto M (2012) Biotic interactions affect the elevational ranges of high-latitude plant species. Ecography 35:1048–1056CrossRefGoogle Scholar
  64. Scherrer D, Körner C (2010) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biol 16:2602–2613Google Scholar
  65. Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416CrossRefGoogle Scholar
  66. Scherrer D, Schmid S, Körner C (2011) Elevational species shifts in a varmer climate are overestimated when based on weather station data. Int J Biometeorol 55:645–654CrossRefGoogle Scholar
  67. Solantie R (1976) The influences of lakes on meso-scale analysis of temperature in Finland. Finnish Meteorological Institute Reports 30, p 130 (in Finnish)Google Scholar
  68. Solantie R (1990) The climate of Finland in relation to its hydrology, ecology and culture. Finnish Meteorological Institute, HelsinkiGoogle Scholar
  69. Solantie R, Drebs A (2000) The mean annual maximum and minimum temperature in Finland 1961–1990. Finnish Meteorological Institute reports 6Google Scholar
  70. Stone P, Carlson J (1979) Atmospheric lapse rate regimes and their parametrization. J Atmos Sci 36:415–423CrossRefGoogle Scholar
  71. Swanson F, Kratz T, Caine N, Woodmansee R (1988) Landform effects on ecosystem patterns and processes. BioScience 38(2):92–98CrossRefGoogle Scholar
  72. Swedish Meteorological and Hydrological Institute (2012) Smhi.
  73. Tikkanen M (2005) Climate. In: Seppälä M (eds) The physical geography of Fennoscandia. Oxford University Press, OxfordGoogle Scholar
  74. Tveito O, Forland E, Heino R, Hanssen-Bauer I, Alexandersson H, Dahlstrom B, Drebs A, Kern-Hansen C, Jonsson E T Varby Laursen, Westman Y (2000) Nordic temperature maps. DNMI Report 09/00 KLIMA OsloGoogle Scholar
  75. Tveito O, Forland E, Alexandersson H, Drebs A, Jonsson T, Tuomenvirta H, Varby-Laursen E (2001) Nordic climate maps. DNMI Report 06/01 KLIMA OsloGoogle Scholar
  76. USGS (2004) Shuttle radar topography mission. Global land cover facility, University of Maryland, College Park, Maryland, February 2000Google Scholar
  77. Vajda A, Venäläinen A (2003) The influence of natural conditions on the spatial variation of climate in Lapland, northern Finland. Int J Climatol 23:1011–1022CrossRefGoogle Scholar
  78. Virtanen T, Neuvonen S, Nikula A (1998) Modelling topoclimatic patterns of egg mortality of epirrita autumnata (lepidoptera: Geometridae) with geographical information system: predictions for current climate and warmer climate scenarios. J Appl Ecol 35(2):311–322CrossRefGoogle Scholar
  79. Walker M, Webber P, Arnold E, Ebert-May D (1994) Effects of interannual climate variation on aboveground phytomass in alpine vegetation. Ecology 75(2):393–408CrossRefGoogle Scholar
  80. Wood E (1991) Land surface—atmosphere interactions for climate modeling. Kluwer Academic Publishers, DordrechtGoogle Scholar
  81. Wood S (2004) Stable and efficient multiple smoothing parameter estimation for generalized additive models. J Am Stat Assoc 99:673–686CrossRefGoogle Scholar
  82. Wood S (2006) Generalized additive models: an introduction with R. Chapman & Hall, LondonGoogle Scholar
  83. Wood S (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B (Statistical Methodology) 73(1):3–36CrossRefGoogle Scholar
  84. Wood S, Augustin N (2002) GAMs with integrated model selection using penalized regression splines and applications to environmental modeling. Ecol Model 157:157–177CrossRefGoogle Scholar
  85. Zhenlin Y, Edward H, Gallaghan T (2011) Modelling surface-air-temperature variation over complex terrain around abisko, swedish lapland: uncertainties of measurements and models at different scales. Geografiska Ann Ser A Phys Geogr 93(2):89–112CrossRefGoogle Scholar
  86. Zimmermann N, Edwards Jr T, Moisen G, Frescino T, Blackard J (2007) Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah. J Appl Ecol 44:1057–1067CrossRefGoogle Scholar
  87. Zimmermann N, Yoccoz N, Edwards T, Meier E, Thuiller W, Guisan A, Schmatz D, Pearman P (2009) Climatic extremes improve predictions of spatial patterns of three species. Proc Natl Acad Sci USA 106:19,723–19,728CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations