Advertisement

Climate Dynamics

, Volume 40, Issue 7–8, pp 2005–2022 | Cite as

Multi-centennial variability controlled by Southern Ocean convection in the Kiel Climate Model

  • Torge MartinEmail author
  • Wonsun Park
  • Mojib Latif
Article

Abstract

A quasi-oscillatory multi-centennial mode of open ocean deep convection in the Atlantic sector of the Southern Ocean in the Kiel Climate Model is described. The quasi-periodic occurrence of the deep convection causes variations in regional and global surface air temperature, Southern Hemisphere sea ice coverage, Southern Ocean and North Atlantic sea surface height, the Antarctic Circumpolar Current and the Atlantic Meridional Overturning Circulation (AMOC). The deep convection is stimulated by a strong built-up of heat at mid-depth. When the heat reservoir is virtually depleted a coincidental strong freshening event at the sea surface shuts down the convection. The heat originates from relatively warm deep water formed in the North Atlantic. The several decades lasting recharge process of the heat reservoir depends on the AMOC and the Weddell Gyre and sets a minimum delay for the deep convection to recur. While the strength of the AMOC increases, the Weddell Gyre weakens during the non-convective regime. Convection onset and shutdown also depend on the stochastic occurrence of favorable sea surface conditions, which contributes to the multi-centennial period of the phenomenon. The shutdown triggers a century-long deviation in AMOC strength caused by significant reductions in bottom water formation and surface salinity in the Southern Ocean’s Atlantic sector. Additional numerical experimentation reveals that sea ice has an important effect on the frequency of occurrence and intensity of the deep convection. Further, we find intriguing similarities to the Weddell Polynya observed during the 1970s.

Keywords

Multi-centennial climate variability Deep convection Southern Ocean Weddell Polynya Coupled climate model 

Notes

Acknowledgments

This work was supported by the BMBF—supported Nordatlantik and DFG—supported SFB754 (www.sfb754.de), and the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no 212643 (THOR: ‘‘Thermohaline Overturning–at Risk’’). The model integrations were performed at the DKRZ Hamburg and the Computer Centre at Kiel University.

References

  1. Bryan F (1986) High-latitude salinity effects and interhemispheric thermohaline circulation. Nature 323:301–304CrossRefGoogle Scholar
  2. Carsey FD (1980) Microwave observations of the Weddell Polynya. Month Weather Rev 108(5):2032–2044CrossRefGoogle Scholar
  3. Delworth T, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J Clim 6:1993–2011CrossRefGoogle Scholar
  4. Drijfhout S, Heinze C, Latif M, Maier-Reimer E (1996) Mean circulation and internal variability in an ocean primitive equation model. J Phys Oceanogr 26:559–580CrossRefGoogle Scholar
  5. Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102(C6):12609–12646Google Scholar
  6. Gordon AL (1978) Deep Antarctic convection west of Maud rise. J Phys Oceanogr 8(4):600–612CrossRefGoogle Scholar
  7. Gordon AL (1982) Weddell deep water variability. J Mar Res 40:199–217Google Scholar
  8. Hasselmann K (1976) Stochastic climate models: 1. Theory. Tellus 28(6):473–485CrossRefGoogle Scholar
  9. Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo Y, Marengo Orsini JA, Nicholls N, Penner JE, Stott PA (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  10. Hibler W, Ackley S (1983) Numerical–simulation of the Weddell Sea pack ice. J Geophys Res 88:2873–2887CrossRefGoogle Scholar
  11. Holland DM (2001) Explaining the Weddell Polynya: a large ocean Eddy shed at Maud Rise. Science 292:1697–1700CrossRefGoogle Scholar
  12. Knight J, Allan R, Folland C, Vellinga M, Mann M (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32(20):L20708. doi: 10.1029/2005GL024233 CrossRefGoogle Scholar
  13. Latif M, Barnett TP (1994) Causes of decadal climate variability over the north Pacific and North America. Science 266:634–637CrossRefGoogle Scholar
  14. Latif M, Park W (2012) Climatic variability on decadal to century time-scales. In: Henderson-Sellers A, McGuffie K (eds) The future of the world’s climate. Elsevier, Amsterdam, pp 167–196, ISBN 978-0-12-386917-3Google Scholar
  15. Latif M, Martin T, Park W (2012) Southern ocean sector centennial climate variability: dynamics and implications for recent decadal trends. J Clim (submitted)Google Scholar
  16. Levitus S et al (1998) World ocean data base 1998. NOAA Atlas NESDIS 18, 346 ppGoogle Scholar
  17. Madec G (2008) Nemo ocean engine. Note du Pole de modlisation 27, 209 pp, Institut Pierre-Simon Laplace, ISSN-No. 1288–1619Google Scholar
  18. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific decadal climate oscillation with impacts on salmon. Bul Am Met Soc 78:1069–1079CrossRefGoogle Scholar
  19. Martinson DG, Kilworth PD, Gordon AL (1981) A convective model for the Weddell Polynya. J Phys Oceanogr 11(4):466–488CrossRefGoogle Scholar
  20. Mikolajewicz U, Maier-Reimer E (1990) Internal secular variability in an ocean general circulation model. Clim Dyn 4:145–156CrossRefGoogle Scholar
  21. Moore GWK, Alverson K, Renfrew IA (2002) A reconstruction of the airsea interaction associated with the Weddell Polynya. J Phys Oceanogr 32(6):1685–1698CrossRefGoogle Scholar
  22. Park W, Latif M (2008) Multidecadal and multicentennial variability of the meridional overturning circulation. Geophys Res Lett 35:L22703. doi: 10.1029/2008GL035779 CrossRefGoogle Scholar
  23. Park W, Keenlyside N, Latif M, Ströh A, Redler R, Roeckner E, Madec G (2009) Tropical pacific climate and its response to global warming in the Kiel Climate Model. J Clim 22(1):71–92CrossRefGoogle Scholar
  24. Parkinson CL (1983) On the development and cause of the Weddell Polynya in a sea ice simulation. J Phys Oceanogr 13(3):501–511CrossRefGoogle Scholar
  25. Pierce DW, Barnett TP, Mikolajewicz U (1995) Competing roles of heat and freshwater flux in forcing thermohaline oscillations. J Phys Oceanogr 25(9):2046–2064CrossRefGoogle Scholar
  26. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  27. Robertson R, Visbeck M, Gordon AL, Fahrbach E (2002) Long-term temperature trends in the deep waters of the Weddell Sea. Deep Sea Res Part II 49(21):4791–4806CrossRefGoogle Scholar
  28. Roeckner E et al (2003) The atmospheric general circulation model ECHAM5. Part I: model description. Technical report 349, 127 pp, Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, GermanyGoogle Scholar
  29. Schroeder M, Fahrbach E (1999) On the Structure and the transport of the eastern Weddell gyre. Deep Sea Res II 46:501–527CrossRefGoogle Scholar
  30. Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13:224–230CrossRefGoogle Scholar
  31. Sutton RT, Hodson DLR (2005) Atlantic ocean forcing of North American and European summer climate. Science 309:115–118CrossRefGoogle Scholar
  32. Swingedouw D, Fichefet T, Goosse H, Loutre MF (2009) Impact of transient freshwater releases in the Southern Ocean on the AMOC and climate. Clim Dyn 33:365–381CrossRefGoogle Scholar
  33. Talley LD (2003) Shallow, intermediate, and deep overturning components of the global heat budget. J Phys Oceanogr 33:530–560. doi: 10.1175/1520-0485(2003)033<0530:SIADOC>2.0.CO;2 CrossRefGoogle Scholar
  34. Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14:3433–3443. doi: 10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2 CrossRefGoogle Scholar
  35. Vellinga M, Wu P (2004) Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J Clim 17(23):4498–4511CrossRefGoogle Scholar
  36. Volkov DL, Fu L–L, Lee T (2010) Mechanisms of the meridional heat transport in the Southern Ocean. Ocean Dyn 60(4):791–801. doi: 10.1007/s10236-010-0288-0 CrossRefGoogle Scholar
  37. Winton M, Sarachik ES (1993) Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. J Phys Oceanogr 23:1389–1410CrossRefGoogle Scholar
  38. Worby AP, Geiger CA, Paget MJ, Woert MLV, Ackley SF, DeLiberty TL (2008) Thickness distribution of Antarctic sea ice. J Geophys Res 113:C05S92. doi: 10.1029/2007JC004254 CrossRefGoogle Scholar
  39. Yin FL, Sarachik ES (1995) Interdecadal thermohaline oscillations in a sector ocean general circulation model: advective and convective processes. J Phys Oceanogr 25:2465–2484CrossRefGoogle Scholar
  40. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi: 10.1029/2006GL026267 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Helmholtz Centre for Ocean Research Kiel (GEOMAR)KielGermany
  2. 2.Applied Physics Laboratory, Polar Science CenterUniversity of WashingtonSeattleUSA

Personalised recommendations