Climate Dynamics

, Volume 41, Issue 9–10, pp 2319–2330 | Cite as

On the future reduction of snowfall in western and central Europe

  • Hylke de Vries
  • Reindert J. Haarsma
  • Wilco Hazeleger
Article

Abstract

Large parts of western and central Europe face a 20–50 % future reduction in snowfall on Hellmann days (days with daily-mean temperatures below freezing). This strong reduction occurs in addition to the expected 75 % decrease of the number of Hellmann days near the end of the twenty first century. The result is insensitive to the exact freezing-level threshold, but is in sharp contrast with the winter daily precipitation, which increases under most global warming scenarios. Not only climate model simulations show this. Observational records also reveal that probabilities for precipitation on Hellmann days have been larger in the past. The future reduction is a consequence of the freezing-level threshold becoming a more extreme quantile of the temperature distribution in the future. Only certain circulation types permit these quantiles to be reached, and it is shown that these have intrinsically low precipitation probability.

Keywords

Snowfall Climate change Circulation patterns Attribution 

References

  1. Cattiaux J, Douville H, Ribes A, Chauvin F, Plante C (2012) Towards a better understanding of wintertime cold extremes over Europe: a pilot study with CNRM and IPSL atmospheric models. Clim Dyn. doi:10.1007/s00382-012-1436-7
  2. Cheng X, Wallace JM (1993) Cluster analysis of the Northern hemisphere wintertime 500-hPa height field: spatial patterns. J Atmos Sci 50:2674–2696CrossRefGoogle Scholar
  3. Croci-Maspoli M, Schwierz C, Davies HC (2007) A muli-faceted climatology of atmospheric blocking and its recent linear trend. J Clim 20:633–649CrossRefGoogle Scholar
  4. Frei C, Schöll R, Fukutome S, Schmidli J, Vidale P (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. J Geophys Res 111:D06105. doi:10.1029/2005JD005965
  5. Haren van R, van Oldenborgh GJ, Lenderink G, Collins M, Hazeleger W (2012) SST and circulation trend biases cause an underestimation of European precipitation trends. Clim Dyn 1–20. doi:10.1007/s00382-012-1401-5
  6. Haylock M, Hofstra N, Klein Tank A, Klok E, Jones P, New M (2008) A european daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res 113:D20119. doi:10.1029/2008JD10201 CrossRefGoogle Scholar
  7. Joshi MM, Gregory JM, Webb MJ, Sexton DMH, Johns TC (2008) Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. J Clim 30:455–465Google Scholar
  8. Kew S, Selten F, Lenderink G, Hazeleger W (2011) Robust assessment of future changes in extreme precipitation over the rhine basin using a gcm. Hydrol Earth Syst Sci 15:1157–1166. doi:10.5194/hess-15-1157-2011 CrossRefGoogle Scholar
  9. Klein Tank AMG, Können GP, Selten FM (2005) Signals of anthropogenic influence on european warming as seen in the trend patterns of daily temperature variance. Int J Climatol 25:1–16CrossRefGoogle Scholar
  10. Lenderink G, van Meijgaard E (2008) Increase in hourly precipitation extremes beyond expectations from temperature. Nat Geosci 1:511–514. doi:10.1038/ngeo262 CrossRefGoogle Scholar
  11. Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M, McAvaney B, Mitchell JFB (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383 CrossRefGoogle Scholar
  12. O’Gorman PA, Schneider T (2009) The physical basis for increases in precipitation extremes in simulations of twenty first century climate change. Proc Natl Acad Sci USA 106:14773–14777. doi:10.1073/pnas.0907610106 CrossRefGoogle Scholar
  13. Pall P, Allen MR, Stone DA (2006) Testing the ClausiusClapeyron constraint on changes in extreme precipitation under co2 warming. Clim Dyn 28:351–363. doi:10.1007/s00382-006-0180-2 CrossRefGoogle Scholar
  14. Rex DF (1951) The effect of Atlantic blocking action upon European climate. Tellus 3:1–16. doi:10.1111/j.2153-3490.1951.tb00784.x CrossRefGoogle Scholar
  15. Sillmann J, Croci-Maspoli M (2009) Present and future atmospheric blocking and its impact on European mean and extreme climate. Geophys Res Lett 36:L10702. doi:10.1029/2009GL038259.x CrossRefGoogle Scholar
  16. Sterl A, Severijns C, Dijkstra H et al. (2008) When can we expect extremely high surface temperatures? Geophys Res Lett 35:L14703. doi:10.1029/2008GL034071 CrossRefGoogle Scholar
  17. Trigo R, Trigo I, DaCamara C, Osborn TJ (2004) Climate impact of the European winter blocking episodes from the NCEP/NCAR Reanalysis. Clim Dyn 23:17–28. doi:10.1007/s00382-004-0410-4 CrossRefGoogle Scholar
  18. de Vries H, Haarsma RJ, Hazeleger W (2012) Western European cold spells in current and future climate. Geophys Res Lett 39:L04706. doi:10.1029/2011GL050665 CrossRefGoogle Scholar
  19. Ward J (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hylke de Vries
    • 1
  • Reindert J. Haarsma
    • 1
  • Wilco Hazeleger
    • 1
  1. 1.Royal Netherlands Meteorological Institute KNMI De BiltThe Netherlands

Personalised recommendations