Climate Dynamics

, Volume 41, Issue 9–10, pp 2427–2438 | Cite as

Stable isotopes in surface snow along a traverse route from Zhongshan station to Dome A, East Antarctica

  • C. Xiao
  • M. Ding
  • V. Masson-Delmotte
  • R. Zhang
  • B. Jin
  • J. Ren
  • C. Li
  • M. Werner
  • Y. Wang
  • X. Cui
  • X. Wang
Article

Abstract

Samples of surface snow were collected for stable isotope analysis along the traverse route from Zhongshan to Dome A (East Antarctica) from Dec 28th, 2007 to Feb. 8th, 2008. The local relationship between δD and surface temperature is established to be 6.4 ± 0.2 ‰ per °C, very similar to the average for East Antarctic. The deuterium excess shows a pattern of high values over Antarctica, particularly at Dome A. We compare our data with an atmospheric general circulation model which includes stable water isotopes (ECHAM5-wiso). The model simulation captures the right levels of δD, but overestimates δ18O. This study provides support for the ongoing deep ice core project at Dome A.

Keywords

Stable isotopic composition East Antarctica ITASE CHINARE 

References

  1. Bowen GJ, Wilkinson B (2002) Spatial distribution of δ18O in meteoric precipitation. Geology 30(4):315–318. doi:10.1130/0091-7613(2002)030<0315:SDOOIM>2.0.CO;2 CrossRefGoogle Scholar
  2. Ciais P, Jouzel J (1994) Deuterium and oxygen 18 in precipitation: an isotopic model including mixed cloud processes. J Geophys Res 99(D8):16793–16803. doi:10.1029/94JD00412 CrossRefGoogle Scholar
  3. Cuffey KM, Vimeux F (2001) Covariation of carbon dioxide and temperature from the Vostok ice core after deuterium-excess correction. Nature 412(6848):523–527CrossRefGoogle Scholar
  4. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16(4):436–468. doi:10.1111/j.2153-3490.1964.tb00181.x CrossRefGoogle Scholar
  5. Delaygue G, Masson V, Jouzel J, Koster RD, Healy RJ (2000) The origin of Antarctic precipitation: a modelling approach. Tellus B 52(1):19–36. doi:10.1034/j.1600-0889.2000.00951.x CrossRefGoogle Scholar
  6. Delmotte M (1997) Enregistrements climatiques à Law-Dome: Variabilité pour les périodes récentes et pour la déglaciation. Ph.D. thesis, Université Joseph Fourier, 300 pGoogle Scholar
  7. Ding MH, Xiao CD, Jin B, Ren JW, Qin DH, Sun WZ (2010) Distribution of δ18O in surface snow along a transect from Zhongshan Station to Dome A, East Antarctica. Chin Sci Bull 55(24):2709–2714. doi:10.1007/s11434-010-3179-3 CrossRefGoogle Scholar
  8. Ding MH, Xiao CD, Li YS, Ren JW, Hou SG, Jin B, Sun B (2011) Spatial variability of surface mass balance along a traverse route from Zhongshan station to Dome A, Antarctica. J Glaciol 57(204):658–666. doi:10.3189/002214311797409820 CrossRefGoogle Scholar
  9. Ekaykin AA, Lipenkov VY, Barkov NI, Petit JR, Masson-Delmotte V (2002) Spatial and temporal variability in isotope composition of recent snow in the vicinity of Vostok station, Antarctica: implications for ice-core record interpretation. Ann Glaciol 35(1):181–186. doi:10.3189/172756402781816726 CrossRefGoogle Scholar
  10. EPICA Community Members (2006) One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444(7116):195–198CrossRefGoogle Scholar
  11. Helsen MM, Van de Wal RSW, Van den Broeke MR, Masson-Delmotte V, Meijer HAJ, Scheele MP, Werner M (2006) Modeling the isotopic composition of Antarctic snow using backward trajectories: simulation of snow pit records. J Geophys Res 111:D15109. doi:10.1029/2005JD006524 CrossRefGoogle Scholar
  12. Jouzel J, Merlivat L (1984) Deuterium and oxygen 18 in precipitation: modeling of the isotopic effects during snow formation, J Geophys Res 89(D7):11749–11757. doi:10.1029/JD089iD07p11749 Google Scholar
  13. Jouzel J, Alley RB, Cuffey CM, Dansgaard W, Grootes P, Hoffmann G, Johnsen SJ, Koster RD, Peel D, Shuman CA, Stievenard M, Stuiver M, White J (1997) Validity of the temperature reconstruction from water isotopes in ice cores. J Geophys Res 102(C12):26471-26487. doi:10.1029/97JC01283 Google Scholar
  14. Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud J, Schilt D, Schwander A, Selmo J, Souchez E, Spahni R, Stauffer R, Steffensen BP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800000 years. Science 317:793–796CrossRefGoogle Scholar
  15. Kang J, Jouzel J, Stievenard M, Qin D, Liu L, Wang D, Li Z, Li J (2009) Variation of stable isotopes in surface snow along a traverse from coast to plateau’s interior in East Antarctica and its climatic significance. Sci Cold Arid Reg 1(1):14–24Google Scholar
  16. Kurita N (2011) Origin of Arctic water vapor during the ice-growth season. Geophys Res Lett 38:L02709. doi:10.1029/2010GL046064 CrossRefGoogle Scholar
  17. Lorius C, Merlivat L (1975) Distribution of mean surface stable isotope values in East Antarctica: observed changes with depth in the coastal area. Int Assoc Hydrol Sci Publ Vienna IAHS 118:127–137Google Scholar
  18. Lorius C, Merlivat L (1977) Distribution of mean surface stable isotope values in East Antarctica: observed changes with depth in a coastal area. Isotopes and impurities in snow and ice: Proceedings of the Grenoble Symposium. August/September 1975, Vienna, Austria, IAHS, pp 127–137Google Scholar
  19. Ma Y, Bian L, Xiao C, Allison I, Zhou X (2010) Near surface climate of the traverse route from Zhongshan Station to Dome A, East Antarctica. Antarct Sci 22(04):443–459. doi:10.1017/S0954102010000209 CrossRefGoogle Scholar
  20. Masson-Delmotte V, Stenni B, Jouzel J (2004) Common millennial-scale variability of Antarctic and Southern Ocean temperatures during the past 5000 years reconstructed from the EPICA Dome C ice core. The Holocene 14(2):145–151CrossRefGoogle Scholar
  21. Masson-Delmotte V et al (2008) A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation, and isotopic modeling. J Clim 21(13):3359–3387CrossRefGoogle Scholar
  22. Masson-Delmotte V, Buiron D, Ekaykin A, Frezzotti M, Gallee H, Jouzel J, Krinner G, Landais A, Motoyama H, Oerter H, Pol K, Pollard D, Ritz C, Schlosser E, Sime LC, Sodemann H, Stenni B, Uemura R, Vimeux F (2011) A comparison of the present and last interglacial periods in six Antarctic ice cores. Clim Past 7(2):397–423CrossRefGoogle Scholar
  23. Mayewski PA, Goodwin ID (1997) International Trans Antarctic Scientific Expedition (ITASE) ‘200 Years of Past Antarctic Climate and Environmental Change’, Science and Implementation Plan, 1996, paper presented at PAGES workshopGoogle Scholar
  24. Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J Geophys Res 84(C8):5029–5033CrossRefGoogle Scholar
  25. Petit JR, White JWC, Young NW, Jouzel J, Korotkevich YS (1991) Deuterium excess in recent Antarctic snow. J Geophys Res 96(D3):5113–5122CrossRefGoogle Scholar
  26. Pol K, Debret M, Masson-Delmotte V, Capron E, Cattani O, Dreyfus G, Falourd S, Johnsen S, Jouzel J, Landais A, Minster B, Stenni B (2011) Links between MIS 11 millennial to sub-millennial climate variability and long term trends as revealed by new high resolution EPICA Dome C deuterium data—a comparison with the Holocene. Clim Past 7(2):437–450CrossRefGoogle Scholar
  27. Proposito M, Becagli S, Castellano E, Flora O, Gragnani R, Stenni B, Traversi R, Udisti R, Frezzotti M (2002) Chemical and isotopic snow variability along the 1998 ITASE traverse from Terra Nova Bay to Dome C, East-Antarctica. Ann Glaciol 35(1):187–194CrossRefGoogle Scholar
  28. Qin D, Ren J (2001) Antarctic glaciology (in Chinese). Science Press, pp 1–239Google Scholar
  29. Qin D, Ren J, Wang W, Petit JR, Jouzel J (1993) Distribution of δD in 25-cm surface snow Along Trans-Antarctic Route (II)—the “1990 International Trans-Antarctic Expedition” glaciological research. Sci Chin Ser B 36(3):375–384Google Scholar
  30. Qin D, Petit JR, Jouzel J, Stievenard M (1994) Distribution of stable isotopes in surface snow along the route of the 1990 International Trans-Antarctica Expedition. J Glaciol 40(134):107–118Google Scholar
  31. Ren J, Qin D (1995) Distribution of deuterium excess in surface snow of the Antarctic ice sheet. Chin Sci Bull 40(19):1629–1633Google Scholar
  32. Schlosser E, Oerter H (2002) Seasonal variation of accumulation and the isotope record in ice cores: a study with surface snow samples and firn cores from Neumayer station, Antarctica. Ann Glaciol 35(1):97–101CrossRefGoogle Scholar
  33. Schlosser E, Oerter H, Masson-Delmotte V, Reijmer C (2008) Atmospheric influence on the deuterium excess signal in polar firn—implications for ice core interpretation. J Glaciol 54(184):117–124CrossRefGoogle Scholar
  34. Schmidt GA, LeGrande AN, Hoffmann G (2007) Water isotope expressions of intrinsic and forced variability in a coupled ocean-atmosphere model. J Geophys Res 112:D10103. doi:10.1029/2006JD007781 CrossRefGoogle Scholar
  35. Sime LC, Wolff EW, Oliver KIC, Tindall JC (2009) Evidence for warmer interglacials in East Antarctic ice cores. Nature 462(7271):342–345. doi:10.1038/nature08564 CrossRefGoogle Scholar
  36. Sodemann H, Stohl A (2009) Asymmetries in the moisture origin of Antarctic precipitation. Geophys Res Lett 36:L22803. doi:10.1029/2009GL040242 CrossRefGoogle Scholar
  37. Sokratov SA, Golubev VN (2009) Snow isotopic content change by sublimation. J Glaciol 55(193):823–828. doi:10.3189/002214309790152456 CrossRefGoogle Scholar
  38. Steen-Larsen HC, Masson-Delmotte V, Sjolte J, Johnsen SJ, Vinther BM, Bréon FM, Clausen HB, Dahl-Jensen D, Falourd S, Fettweis X, Gallée H, Jouzel J, Kageyama M, Lerche H, Minster B, Picard G, Punge HJ, Risi C, Salas D, Schwander J, Steffen K, Sveinbjörnsdóttir AE, Svensson A, White J (2011) Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland. J Geophys Res 116:D06108. doi:10.1029/2010JD014311 CrossRefGoogle Scholar
  39. Stenni B, Masson-Delmotte V, Selmo E, Oerter H, Meyer H, Rothlisberger R, Jouzel J, Cattani O, Falourd S, Fischer H, Hoffmann G, Iacumin P, Johnsen SJ, Minster B, Udisti R (2010) The deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores (East Antarctica). Quat Sci Rev 29:146–159CrossRefGoogle Scholar
  40. Uemura R, Matsur Y, Yoshimura K, Motoyama H, Yoshida N (2008) Evidence of deuterium excess in water vapor as an indicator of ocan surface conditions. J Geophys Res 113:D19114. doi:10.1029/2008JD010209 CrossRefGoogle Scholar
  41. Van Lipzig NPM, Van Meijgaard E, Oerlemans J (2002) The effect of temporal variations in the surface mass balance and temperature inversion strength on the interpretation of ice-core signals. J Glaciol 48(163):611–621CrossRefGoogle Scholar
  42. Wang Y, Hou S (2009) A new interpolation method for Antarctic surface temperature. Prog Nat Sci 19:1843–1849. doi:10.1016/j.pnsc.2009.07.012 CrossRefGoogle Scholar
  43. Wang Y, Hou S, Masson-Delmotte V, Jouzel J (2010) A generalized additive model for the spatial distribution of stable isotopic composition in Antarctic surface snow. Chem Geol 271(3–4):133–141. doi:10.1016/j.chemgeo.2010.01.004 CrossRefGoogle Scholar
  44. Wang Y, Sodemann H, Hou S, Masson-Delmotte V (2012) Snow accumulation and its moisture origin over Dome Argus, Antarctica. Clim Dyn. doi:10.1007/s00382-012-1398-9. http://www.springerlink.com/content/l22781j524057351/
  45. Watanabe O, Kamiyama K, Motoyama H, Fujii Y, Igarashi M, Furukawa T, Goto-Azuma K, Saito T, Kanamori S, Kanamori N (2003) General tendencies of stable isotopes and major chemical constituents of the Dome Fuji deep ice core. Mem Natl Inst Polar Res Spec issue 57:1–24Google Scholar
  46. Werner M, Heimann M, Hoffmann G (2001) Isotopic sompositon and origin of polar precipitation in present and glacial climate simulations. Tellus B 53B:53–71CrossRefGoogle Scholar
  47. Werner M, Langebroek PM, Carlsen T, Herold M, Lohmann G (2011) Stable water isotopes in the ECHAM5 general circulation model: toward high-resolution isotope modeling on a global scale. J Geophys Res 116:D15109. doi:10.1029/2011JD015681 CrossRefGoogle Scholar
  48. Winkler R, Landais A, Sodemann H, Dümbgen L, Prié F, Masson-Delmotte V, Stenni B, Jouzel J (2012) Deglaciation records of 17O-excess in East Antarctica: reliable reconstruction of oceanic normalized relative humidity from coastal sites. Clim Past 8:1–16. doi:10.5194/cp-8-1-2012 CrossRefGoogle Scholar
  49. Xiao C, Qin D, Bian L, Zhou X, Allison I, Yan M (2005) A precise monitoring of snow surface height in the region of Lambert Glacier basin-Amery Ice Shelf, East Antarctica. Sci Chin Ser D. 48(1):100–111CrossRefGoogle Scholar
  50. Xiao C, Li Y, Allison I, Hou S, Dreyfus G, Barnola JM, Ren J, Bian L, Zhang S, Kameda T (2008) Surface characteristics at Dome A, Antarctica: first measurements and a guide to future ice-coring sites. Ann Glaciol 48(1):82–87CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • C. Xiao
    • 1
    • 2
  • M. Ding
    • 1
    • 2
  • V. Masson-Delmotte
    • 3
  • R. Zhang
    • 1
  • B. Jin
    • 4
  • J. Ren
    • 2
  • C. Li
    • 2
  • M. Werner
    • 5
  • Y. Wang
    • 2
  • X. Cui
    • 2
  • X. Wang
    • 2
  1. 1.Institute of Climate SystemChinese Academy of Meteorological SciencesBeijingChina
  2. 2.State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina
  3. 3.IPSL/Laboratoire des Sciences du Climat et de l’Environnement, UMR 8212 CEA/CNRS/UVSQGif-sur-YvetteFrance
  4. 4.Chinese Arctic and Antarctic AdministrationBeijingChina
  5. 5.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations