Climate Dynamics

, Volume 42, Issue 1–2, pp 311–328 | Cite as

Meridional overturning circulation: stability and ocean feedbacks in a box model

  • Andrea A. Cimatoribus
  • Sybren S. Drijfhout
  • Henk A. Dijkstra
Article

Abstract

A box model of the inter-hemispheric Atlantic meridional overturning circulation is developed, including a variable pycnocline depth for the tropical and subtropical regions. The circulation is forced by winds over a periodic channel in the south and by freshwater forcing at the surface. The model is aimed at investigating the ocean feedbacks related to perturbations in freshwater forcing from the atmosphere, and to changes in freshwater transport in the ocean. These feedbacks are closely connected with the stability properties of the meridional overturning circulation, in particular in response to freshwater perturbations. A separate box is used for representing the region north of the Antarctic circumpolar current in the Atlantic sector. The density difference between this region and the north of the basin is then used for scaling the downwelling in the north. These choices are essential for reproducing the sensitivity of the meridional overturning circulation observed in general circulation models, and therefore suggest that the southernmost part of the Atlantic Ocean north of the Drake Passage is of fundamental importance for the stability of the meridional overturning circulation. With this configuration, the magnitude of the freshwater transport by the southern subtropical gyre strongly affects the response of the meridional overturning circulation to external forcing. The role of the freshwater transport by the overturning circulation (Mov) as a stability indicator is discussed. It is investigated under which conditions its sign at the latitude of the southern tip of Africa can provide information on the existence of a second, permanently shut down, state of the overturning circulation in the box model. Mov will be an adequate indicator of the existence of multiple equilibria only if salt-advection feedback dominates over other processes in determining the response of the circulation to freshwater anomalies. Mov is a perfect indicator if feedbacks other than salt-advection are negligible.

Keywords

Atlantic Meridional overturning circulation Stability Freshwater Salt-advection feedback Southern subtropical gyre 

References

  1. Allison LC, Johnson HL, Marshall DP, Munday DR (2010) Where do winds drive the Antarctic Circumpolar Current? Geophys Res Lett 37:L12605Google Scholar
  2. Arzel O, England MH, Saenko OA (2010) The impact of wind-stress feedback on the stability of the Atlantic meridional overturning circulation. J Clim 24:1965–1984Google Scholar
  3. Callies J, Marotzke J (2012) A simple and self-consistent geostrophic-force-balance model of the thermohaline circulation with boundary mixing. Ocean Sci 8:49–63CrossRefGoogle Scholar
  4. Cessi P, Wolfe CL (2009) Eddy-driven buoyancy gradients on eastern boundaries and their role in the thermocline. J Phys Oceanogr 39:1595–1614CrossRefGoogle Scholar
  5. Cimatoribus AA, Drijfhout SS, den Toom M, Dijkstra HA (2012) Sensitivity of the Atlantic meridional overturning circulation to south Atlantic freshwater anomalies. Clim Dyn 39:2291–2306Google Scholar
  6. Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJ-M, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5 degrees n. Science 317:935–938CrossRefGoogle Scholar
  7. De Boer AM, Gnanadesikan A, Edwards NR, Watson AJ (2010) Meridional density gradients do not control the Atlantic overturning circulation. J Phys Oceanogr 40:368–380CrossRefGoogle Scholar
  8. den Toom M, Dijkstra HA, Cimatoribus AA, Drijfhout SS (2012) Effect of atmospheric feedbacks on the stability of the Atlantic meridional overturning circulation. J Clim 25:4081–4096Google Scholar
  9. Doedel EJ, Oldeman BE (2009) AUTO-07P: Continuation and bifurcation software for ordinary differential equations. Concordia University, Montreal, Concordia university editionGoogle Scholar
  10. Drijfhout SS, Weber SL, Swaluw E (2011) The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates. Clim Dyn 37:1575–1586CrossRefGoogle Scholar
  11. Ferrari R, Wunsch C (2009) Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu Rev Fluid Mech 41:253–282CrossRefGoogle Scholar
  12. Friocourt Y, Drijfhout S, Blanke B, Speich S (2005) Water mass export from drake passage to the Atlantic, Indian, and Pacific Oceans: a lagrangian model analysis. J Phys Oceanogr 35:1206–1222CrossRefGoogle Scholar
  13. Gnanadesikan A (1999) A simple predictive model for the structure of the oceanic pycnocline. Science 283:2077–2079CrossRefGoogle Scholar
  14. Hawkins E, Smith RS, Allison LC, Gregory JM, Woollings TJ, Pohlmann H, de Cuevas B (2011) Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys Res Lett 38:L10605Google Scholar
  15. Huisman SE, den Toom M, Dijkstra HA, Drijfhout SS (2010) An indicator of the multiple equilibria regime of the Atlantic meridional overturning circulation. J Phys Oceanogr 40:551–567CrossRefGoogle Scholar
  16. Johnson HL, Marshall DP (2002) A theory for the surface Atlantic response to thermohaline variability. J Phys Oceanogr 32:1121–1132CrossRefGoogle Scholar
  17. Johnson HL, Marshall DP, Sproson DAJ (2007) Reconciling theories of a mechanically driven meridional overturning circulation with thermohaline forcing and multiple equilibria. Clim Dyn 29:821–836CrossRefGoogle Scholar
  18. Levermann A, Fürst JJ (2010) Atlantic pycnocline theory scrutinized using a coupled climate model. Geophys Res Lett 37:L14602CrossRefGoogle Scholar
  19. Longworth H, Marotzke J, Stocker TF (2005) Ocean gyres and abrupt change in the thermohaline circulation: a conceptual analysis. J Clim 18:2403–2416CrossRefGoogle Scholar
  20. Lumpkin R, Speer K (2007) Global ocean meridional overturning. J Phys Oceanogr 37(10):2550–2562CrossRefGoogle Scholar
  21. Marsh R, Hazeleger W, Yool A, Rohling EJ (2007) Stability of the thermohaline circulation under millennial co2 forcing and two alternative controls on Atlantic salinity. Geophys Res Lett 34:L03605Google Scholar
  22. Marshall DP, Pillar HR (2011) Momentum balance of the Wind-Driven and meridional overturning circulation. J Phys Oceanogr 41:960–978CrossRefGoogle Scholar
  23. Nikurashin M, Vallis G (2012) A theory of the interhemispheric meridional overturning circulation and associated stratification. J Phys Oceanogr 42:1652–1667Google Scholar
  24. Oliver KIC, Watson AJ, Stevens DP (2005) Can limited ocean mixing buffer rapid climate change. Tellus A 57:676–690CrossRefGoogle Scholar
  25. Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12:799–811CrossRefGoogle Scholar
  26. Rahmstorf S, Crucifix M, Ganopolski A, Goosse H, Kamenkovich I, Knutti R, Lohmann G, Marsh R, Mysak LA, Wang Z, Weaver AJ (2005) Thermohaline circulation hysteresis: a model intercomparison. Geophys Res Lett 32:L23605CrossRefGoogle Scholar
  27. Rooth C (1982) Hydrology and ocean circulation. Progr Oceanogr 11:131–149CrossRefGoogle Scholar
  28. Scott JR, Marotzke J, Stone PH (1999) Interhemispheric thermohaline circulation in a coupled box model. J Phys Oceanogr 29:351–365CrossRefGoogle Scholar
  29. Sijp WP, England MH (2006) Sensitivity of the Atlantic thermohaline circulation and its stability to basin-scale variations in vertical mixing. J Clim 19:5467–5478CrossRefGoogle Scholar
  30. Sijp WP, Gregory JM, Tailleux R, Spence P (2012) The key role of the western boundary in linking the AMOC strength to the North-South pressure gradient. J Phys Oceanogr 42:628–643CrossRefGoogle Scholar
  31. Silvia L (2011) Garzoli and Ricardo Matano. The South Atlantic and the Atlantic meridional overturning circulation. Deep-Sea Res Pt II 58:1837–1847Google Scholar
  32. Spall MA (2004) Boundary currents and watermass transformation in marginal seas. J Phys Oceanogr 34:1197–1213CrossRefGoogle Scholar
  33. Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13:224–230CrossRefGoogle Scholar
  34. de Vries P, Weber SL (2005) The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation. Geophys Res Lett 32:L09606CrossRefGoogle Scholar
  35. Wolfe CL, Cessi P (2011) The adiabatic pole-to-pole overturning circulation. J Phys Oceanogr 41:1795–1810CrossRefGoogle Scholar
  36. Wolfram Research, Inc (2010) Mathematica, 8.0 edn. Wolfram Research, Inc., Champaign Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrea A. Cimatoribus
    • 1
  • Sybren S. Drijfhout
    • 1
  • Henk A. Dijkstra
    • 2
  1. 1.Royal Netherlands Meteorological InstituteDe BiltThe Netherlands
  2. 2.Institute for Marine and Atmospheric research UtrechtUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations