Climate Dynamics

, Volume 39, Issue 12, pp 2747–2768

Performance of a multi-RCM ensemble for South Eastern South America

  • A. F. Carril
  • C. G. Menéndez
  • A. R. C. Remedio
  • F. Robledo
  • A. Sörensson
  • B. Tencer
  • J.-P. Boulanger
  • M. de Castro
  • D. Jacob
  • H. Le Treut
  • L. Z. X. Li
  • O. Penalba
  • S. Pfeifer
  • M. Rusticucci
  • P. Salio
  • P. Samuelsson
  • E. Sanchez
  • P. Zaninelli
Article

Abstract

The ability of four regional climate models to reproduce the present-day South American climate is examined with emphasis on La Plata Basin. Models were integrated for the period 1991–2000 with initial and lateral boundary conditions from ERA-40 Reanalysis. The ensemble sea level pressure, maximum and minimum temperatures and precipitation are evaluated in terms of seasonal means and extreme indices based on a percentile approach. Dispersion among the individual models and uncertainties when comparing the ensemble mean with different climatologies are also discussed. The ensemble mean is warmer than the observations in South Eastern South America (SESA), especially for minimum winter temperatures with errors increasing in magnitude towards the tails of the distributions. The ensemble mean reproduces the broad spatial pattern of precipitation, but overestimates the convective precipitation in the tropics and the orographic precipitation along the Andes and over the Brazilian Highlands, and underestimates the precipitation near the monsoon core region. The models overestimate the number of wet days and underestimate the daily intensity of rainfall for both seasons suggesting a premature triggering of convection. The skill of models to simulate the intensity of convective precipitation in summer in SESA and the variability associated with heavy precipitation events (the upper quartile daily precipitation) is far from satisfactory. Owing to the sparseness of the observing network, ensemble and observations uncertainties in seasonal means are comparable for some regions and seasons.

Keywords

Regional climate models Multi-RCM ensemble validation South Eastern South America South America 

References

  1. Alves LM, Marengo J (2010) Assessment of regional seasonal predictability using the PRECIS regional climate modeling system over South America. Theor Appl Climatol 100:337–350. doi:10.1007/s00704-009-0165-2 CrossRefGoogle Scholar
  2. Berbery E, Collini E (2000) Springtime precipitation and water vapor flux over southeastern South America. Mon Weather Rev 128:1328–1346CrossRefGoogle Scholar
  3. Bermejo R, Staniforth A (1992) The conversion of semi-Lagrangian advection schemes to quasi-monotone schemes. Mon Weather Rev 120(11):2622–2632CrossRefGoogle Scholar
  4. Bony S, Emanuel KA (2001) A parameterization of the cloudiness associated with cumulus convection; evaluation using TOGA-COARE data. J Atmos Sci 58(21):3158–3183CrossRefGoogle Scholar
  5. Boulanger J-P, Brasseur G, Carril AF, Castro M, Degallier N, Ereño C, Marengo J, Le Treut H, Menéndez C, Nuñez M, Penalba O, Rolla A, Rusticucci M, Terra R (2010) The European CLARIS project: a Europe-South America network for climate change assessment and impact studies. Clim Change 98(3):307–329. doi:10.1007/s10584-009-9734-8 CrossRefGoogle Scholar
  6. Carril AF, Gualdi S, Cherchi A, Navarra A (2008) Heatwaves in Europe: areas of homogeneous variability and links with the regional to large-scale atmospheric and SSTs anomalies. Clim Dyn 30(1):77–98. doi:10.1007/s00382-007-0274-5 CrossRefGoogle Scholar
  7. Castro M, Fernandez C, Gaertner MA (1993) Description of a meso-scale atmospheric numerical model. In: Diaz JI, Lions JL (eds) Mathematics, climate and environment (ISBN: 2-225-84297-3), Masson, p 273Google Scholar
  8. Caya D, Biner S (2004) Internal variability of RCM simulations over an annual cycle. Clim Dyn 22:33–46CrossRefGoogle Scholar
  9. Chen W, Jiang Z, Li L, Yiou P (2011) Simulation of regional climate change under the IPCC A2 scenario in southeast China. Clim Dyn 36:491–507CrossRefGoogle Scholar
  10. Chou SC, Tanajura CA, Xue Y, Nobre CA (2002) Validation of the coupled Eta/CPTEC/SSiB model over South America. J Geophys Res 107(D20). doi:10.1029/2000JD000270
  11. Chou SC, Marengo JA, Lyra AA, Sueiro G, Pesquero JF, Alves LM, Kay G, Betts R, Chagas DJ, Gomes JL, Bustamante JF, Tavares P (2011) Downscaling of South America present climate driven by 4-member HadCM3 runs. Clim Dyn. doi:10.1007/s00382-011-1002-8
  12. Christensen OB (1999) Relaxation of soil variables in a regional climate model. Tellus 51A:674–685Google Scholar
  13. Christensen JH, Machenhauer B, Jones RG, Schär C, Ruti PM et al (1997) Validation of present-day regional climate simulations over Europe: LAM simulations with observed boundary conditions. Clim Dyn 13:489–506CrossRefGoogle Scholar
  14. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P, Tignor M (2007a) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group i to the 4th assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  15. Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007b) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81:1–6. doi:10.1007/s10584-006-9211-6 CrossRefGoogle Scholar
  16. Covey C, AchutaRao KM, Fiorino M, Gleckler PJ, Taylor KE, Wehner MF (2002) Intercomparison of climate data sets as a measure of observational uncertainty. Report no. 69, Program for climate model diagnosis and intercomparison, Livermore, CA 94550, USA, 38 ppGoogle Scholar
  17. Curry JA, Lynch AH (2002) Comparing arctic regional climate models. EOS Trans Am Geophys Union 83:87CrossRefGoogle Scholar
  18. da Rocha RP, Morales CA, Cuadra SV, Ambrizzi T (2009) Precipitation diurnal cycle and summer climatology assessment over South America: an evaluation of Regional Climate Model version 3 simulations. J Geophys Res 114:D10108. doi:10.1029/2008JD010212 CrossRefGoogle Scholar
  19. Demaria EMC, Rodriguez DA, Ebert EE, Salio P, Su F, Valdes JB (2011) Evaluation of mesoscale convective systems in South America using multiple satellite products and an object‐based approach. J Geophys Res 116:D08103. doi:10.1029/2010JD015157
  20. Druyan LM, Feng J, Cook KH, Xue Y, Fulakeza M, Hagos SM, Konare′ A, Moufouma-Okia W, Rowell DP, Vizy EK, Ibrah SS (2010) The WAMME regional model intercomparison study. Clim Dyn 35:175–192. doi:10.1007/s00382-009-0676-7 CrossRefGoogle Scholar
  21. Ducoudre N, Laval K, Perrier A (1993) SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land-atmosphere interface within the LMD atmospheric general circulation model. J Clim 6:248–273CrossRefGoogle Scholar
  22. Dümenil L, Todini E (1992) A rainfall–runoff scheme for use in the Hamburg climate model. In: O’Kane JP (ed) Advances in theoretical hydrology. EGS series of hydrological sciences, vol 1. Elsevier, Amsterdam, pp 129–157Google Scholar
  23. Emanuel KA (1993) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335CrossRefGoogle Scholar
  24. Fernandez JPR, Franchito SH, Rao VB (2006) Simulation of the summer circulation over South America by two regional climate models. Part I: mean climatology. Theor Appl Climatol 86:247–260. doi:10.1007/s00704-005-0212-6 CrossRefGoogle Scholar
  25. Figueroa S, Satyamurti P, Silva Dias PL (1995) Simulation of the summer circulation over the South American region with an eta coordinate model. J Atmos Sci 52:1573–1584CrossRefGoogle Scholar
  26. Fu C et al (2005) Regional climate model intercomparison project for Asia. Bull Am Meteorol Soc 86:257–266CrossRefGoogle Scholar
  27. Gao X, Pal JS, Giorgi F (2006) Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation. Geophys Res Lett 33:L03706. doi:10.1029/2005GL024954 CrossRefGoogle Scholar
  28. Garand L (1983) Some improvements and complements to the infrared emissivity algorithm including a parameterization of the absorption in the continuum region. J Atmos Sci 40:230–244CrossRefGoogle Scholar
  29. Giorgetta M, Wild M (1995) The water vapour continuum and its representation in ECHAM4, Max Planck Institut fuer Meteorologie report, 162, p 38Google Scholar
  30. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183Google Scholar
  31. Göber M, Zsótér E, Richardson DS (2008) Could a perfect model ever satisfy a naïve forecaster? On grid box mean versus point verification. Meteorol Appl 15:359–365CrossRefGoogle Scholar
  32. Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting. I. Basic concept. Tellus A57:219–233Google Scholar
  33. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi:10.1029/2008JD010201 CrossRefGoogle Scholar
  34. Hewitt CD (2005) The ENSEMBLES project: providing ensemble-based predictions of climate changes and their impacts. EGGS Newsletter 13:22–25Google Scholar
  35. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne J-L, Fairhead L, Filiberti M-A, Friedlingstein P, Grandpeix J-X, Krinner G, LeVan P, Li Z-X, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813CrossRefGoogle Scholar
  36. Hsie EY, Anthes RA, Keyser D (1984) Numerical simulation of frontogenesis in a moist atmosphere. J Atmos Sci 41:2581–2594CrossRefGoogle Scholar
  37. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Stocker EF, Wolff DB (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeorol 8:33–55CrossRefGoogle Scholar
  38. Jacob D (2001) A note on the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73CrossRefGoogle Scholar
  39. Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sánchez E, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An intercomparison of regional climate models for Europe: design of the experiments and model performance. Clim Change, 31–52. doi:10.1007/s10584-006-9213-4
  40. Kain J, Fritsch J (1993) Convective parameterization for mesoscale models: the Kain–Fritsch scheme. In: Emanuell KA, Raymond DJ (eds) The representation of cumulus convection in numerical models. American Meteorological Society, Boston, pp 165–170Google Scholar
  41. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–472CrossRefGoogle Scholar
  42. Kendon EJ, Jones RG, Kjellström E, Murphy JM (2010) Using and designing GCM–RCM ensemble regional climate projections. J Clim 23:6485–6503CrossRefGoogle Scholar
  43. Kitoh A, Kusunoki S, Nakaegawa T (2011) Climate change projections over South America in the late 21st century with the 20 and 60 km mesh Meteorological Research Institute atmospheric general circulation model (MRI-AGCM). J Geophys Res 116:D06105. doi:10.1029/2010JD014920 CrossRefGoogle Scholar
  44. Kjellström E, Bärring L, Gollvik S, Hansson U, Jones C, Samuelsson P, Rummukainen M, Ullerstig A, Willén U, Wyser K (2005) A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). Reports Meteorology and Climatology No 108, SMHI, SE-60176 Norrköping, SwedenGoogle Scholar
  45. Knutti R, Allen MR, Friedlingstein P, Gregory JM, Hegerl GC, Meehl GA, Meinshausen M, Murphy JM, Plattner G-K, Raper SCB, Stocker TF, Stott PA, Teng H, Wigley TML (2008) Review of uncertainties in global temperature projections over the twenty-first century. J Clim 21:2651–2663CrossRefGoogle Scholar
  46. Krinner G, Viovy N, de-Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice C (2005) A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Glob Change Biol 19:1015–1048Google Scholar
  47. Laing AG, Fritsch JM (1997) The global population of mesoscale convective complexes. Q J R Meteorol Soc 123:389–405CrossRefGoogle Scholar
  48. Li ZX (1999) Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J Clim 12:986–1001CrossRefGoogle Scholar
  49. Magrin G, Gay García C, Cruz Choque D, Giménez JC, Moreno AR, Nagy GJ, Nobre C, Villamizar A (2007) In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the 4th assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 581–615Google Scholar
  50. Marengo JA, Jones R, Alvesa LM, Valverdea MC (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol. doi:10.1002/joc.1863
  51. Marengo JA, Rusticucci M, Penalba O, Renom M (2010a) An intercomparison of observed and simulated extreme rainfall and temperature events during the last half of the twentieth century: part 2: historical trends. Clim Change 98:509–529. doi:10.1007/s10584-009-9743-7 CrossRefGoogle Scholar
  52. Marengo JA, Ambrizzi T, da Rocha RP, Alves LM, Cuadra SV, Valverde MC, Torres RR, Santos DC, Ferraz SET (2010b) Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim Dyn. doi:10.1007/s00382-009-0721-6
  53. Marengo JA, Chou SC, Kay G, Alves LM, Pesquero JF, Soares WR, Santos DC, Lyra AA, Sueiro G, Betts R, Chagas DJ, Gomes JL, Bustamante JF, Tavares P (2011) Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Clim Dyn. doi:10.1007/s00382-011-1155-5
  54. Mearns LO, Gutowski W, Jones R, Leung R, McGinnis S, Nunes A, Qian Y (2009) A regional climate change assessment program for North America. EOS Trans Am Geophys Union 90(36):311. doi:10.1029/2009EO360002 Google Scholar
  55. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT et al (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M et al (eds) Climate change 2007: the physical science basis. contribution of working group I to the 4th assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  56. Meinke I, Roads J, Kanamitsu M (2007) Evaluation of RSM-simulated precipitation during 317 CEOP. J Meteorol Soc Jpn 85A:145–166CrossRefGoogle Scholar
  57. Menéndez CG, Saulo AC, Li Z-X (2001) Simulation of South American wintertime climate with a nesting system. Clim Dyn 17:219–231CrossRefGoogle Scholar
  58. Menéndez CG, de Castro M, Boulanger J-P, D’Onofrio A, Sanchez E, Sörensson AA, Blazquez J, Elizalde A, Jacob D, Le Treut H, Li Z-X, Núñez MN, Pessacg N, Pfeiffer S, Rojas M, Rolla A, Samuelsson P, Solman SA, Teichmann C (2010a) Downscaling extreme month-long anomalies in southern South America. Clim Change 98:379–403. doi:10.1007/s10584-009-9739-3 CrossRefGoogle Scholar
  59. Menéndez CG, de Castro M, Sörensson AA, Boulanger J-P, Participating CLARIS Modeling Groups (2010b) CLARIS project: towards climate downscaling in South America. Meteorol Z 19:357–362. doi:10.1127/0941-2948/2010/0459 CrossRefGoogle Scholar
  60. Misra V, Dirmeyer P, Kirtman B (2003) Dynamic downscaling of seasonal simulations over South America. J Clim 16:103–117CrossRefGoogle Scholar
  61. Morcrette J–J (1991) Radiation and cloud radiative properties in the ECMWF operational weather forecast model. J Geophys Res 96D:9121–9132CrossRefGoogle Scholar
  62. Morcrette J–J, Smith L, Fourquart Y (1986) Pressure and temperature dependance of the absorption in longwave radiation parameterizations. Beitr Phys Atmos 59:455–469Google Scholar
  63. New MG, Hulme M, Jones PD (1999) Representing twentieth-century space time climate variability. Part I. Development of a 1961–1990 mean monthly terrestrial climatology. J Clim 12:829–856CrossRefGoogle Scholar
  64. New MG, Hulme M, Jones PD (2000) Representing twentieth-century space time climate variability. Part II. Development of a 1901–1996 mean monthly terrestrial climatology. J Clim 13:2217–2238CrossRefGoogle Scholar
  65. Nicolini M, Salio P, Katzfey J, McGregor JL, Saulo AC (2002) January and July regional climate simulation over South America. J Geophys Res 107(D20). doi:10.1029/2001JD000736
  66. Nordeng TE (1994) Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF technical Memorandum no 206. European Centre for Medium Range Weather Forecasts, Reading, UK, p 41Google Scholar
  67. Nuñez MN, Solman SA, Cabré MF (2009) Regional climate change experiments over southern South America. II: climate change scenarios in the late twenty-first century. Clim Dyn 32:1081–1095. doi:10.1007/s00382-008-0449-8 CrossRefGoogle Scholar
  68. Palmer TN, Shukla J (2000) Editorial to DSP/PROVOST special issue. Q J R Meteorol Soc 126:1989–1990CrossRefGoogle Scholar
  69. Pesquero JF, Chou SC, Nobre CA, Marengo JA (2010) Climate downscaling over South America for 1961–1970 using Eta model. Theor Appl Climatol 99:75–93. doi:10.1007/s00704-009-0123-z CrossRefGoogle Scholar
  70. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the 4th assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  71. Rasch PJ, Kristjánsson JE (1998) A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J Clim 11:1587–1614CrossRefGoogle Scholar
  72. Roads J, Chen S, Cocke S, Druyan L, Fulakeza M, LaRow T, Lonergan P, Qian J-H, Zebiak S (2003) International Research Institute/Applied Research Centers (IRI/ARCs) regional model intercomparison over South America. J Geophys Res 108(D14):4425. doi:10.1029/2002JD003201 CrossRefGoogle Scholar
  73. Rockel B, Geyer B (2008) The performance of the regional climate model CLM in different climate regions, based on the example of precipitation. Meteorol Z 12:487–498CrossRefGoogle Scholar
  74. Rojas M, Seth A (2003) Simulation and sensitivity in a nested modeling system for South America. Part II: GCM boundary forcing. J Clim 16:2454–2471CrossRefGoogle Scholar
  75. Rummukainen M (2010) State-of-the-art with regional climate models. WIREs Clim Change 1:82–96. doi:10.1002/wcc.008 CrossRefGoogle Scholar
  76. Rusticucci M, Marengo J, Penalba O, Renom M (2010) An intercomparison of model-simulated in extreme rainfall and temperature events during the last half of the twentieth century. Part 1: mean values and variability. Clim Change 98:493–508. doi:10.1007/s10584-009-9742-8 CrossRefGoogle Scholar
  77. Samuelsson P, Gollvik S, Ullerstig A (2006) The land-surface scheme of the Rossby Centre regional atmospheric climate model (RCA3). Rep Meteorol 122, SMHI SE-601 76. Norrköping, SwedenGoogle Scholar
  78. Samuelsson P, Jones C, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre Regional Climate Model RCA3: model description and performance. Tellus 63A. doi:10.1111/j.1600-0870.2010.00478.x
  79. Sass BH, Rontu L, Savijärvi H, Räisänen P (1994) HIRLAM-2 Radiation scheme: documentation and tests. Hirlam technical report no 16, SMHI. SE-601 76 Norrköping, Sweden, 43 ppGoogle Scholar
  80. Savijärvi H (1990) A fast radiation scheme for mesoscale model and short-range forecast models. J Appl Meteorol 29:437–447CrossRefGoogle Scholar
  81. Seluchi ME, Marengo JA (2000) Tropical-midlatitude exchange of air masses during summer and winter in South America: climatic aspects and examples of intense events. Int J Climatol 20:1167–1190CrossRefGoogle Scholar
  82. Seth A, Rojas M (2003) Simulation and sensitivity in a nested modeling system for South America. Part I: reanalyses boundary forcing. J Clim 16:2437–2453CrossRefGoogle Scholar
  83. Seth A, Rojas M, Liebmann B, Qian J-H (2004) Daily rainfall analysis for South America from a regional climate model and station observations. Geophys Res Lett 31:L07213. doi:10.1029/2003GL019220 CrossRefGoogle Scholar
  84. Seth A, Rauscher SA, Camargo SJ, Qian J-H, Pal JS (2007) RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields. Clim Dyn 28:461–480. doi:10.1007/s00382-006-0191-z CrossRefGoogle Scholar
  85. Silva VBS, Berbery EH (2006) Intense rainfall events affecting the La Plata basin. J Hydrometeorol 7:769–787CrossRefGoogle Scholar
  86. Silvestri G, Vera C (2008) Evaluation of the WCRP-CMIP3 model simulations in the La Plata basin. Meteorol Appl 15:497–502. doi:10.1002/met.98 CrossRefGoogle Scholar
  87. Silvestri G, Vera C, Jacob D, Pfeifer S, Teichmann C (2009) A high-resolution 43-year atmospheric hindcast for South America generated with the MPI regional model. Clim Dyn 32:693–709. doi:10.1007/s00382-008-0423-5 CrossRefGoogle Scholar
  88. Solman SA, Pessacg NL (2011) Regional climate simulations over South America: sensitivity to model physics and to the treatment of lateral boundary conditions using the MM5 model. Clim Dyn. doi:10.1007/s00382-011-1049-6 Google Scholar
  89. Solman SA, Nuñez MN, Cabré MF (2008) Regional climate change experiments over southern South America. I: present climate. Clim Dyn 30:533–552. doi:10.1007/s00382-007-0304-3 CrossRefGoogle Scholar
  90. Sörensson AA, Menéndez CG (2011) Summer soil-precipitation coupling in South America. Tellus 63A:56–68Google Scholar
  91. Sörensson AA, Menéndez CG, Ruscica R, Alexander P, Samuelsson P, Willén U (2010) Projected precipitation changes in South America: a dynamical downscaling within CLARIS. Meteorol Z 19:347–355. doi:10.1127/0941-2948/2010/0467 CrossRefGoogle Scholar
  92. Stephens GL (1978) Radiation profiles in extended water clouds: II. Parameterization schemes. J Atmos Sci 35:2123–2132CrossRefGoogle Scholar
  93. Sundquist H (1978) A parameterization scheme for non-convective condensation including precipitation including prediction of cloud water content. Q J R Meteorol Soc 104:677–690CrossRefGoogle Scholar
  94. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192CrossRefGoogle Scholar
  95. Tencer B, Rusticucci M, Jones P, Lister D (2011) A Southeastern South American daily gridded dataset of observed surface minimum and maximum temperature for 1961–2000. Bull Am Meteorol Soc 92:1339–1346Google Scholar
  96. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large scale models. Mon Weather Rev 117:1779–1800CrossRefGoogle Scholar
  97. Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217CrossRefGoogle Scholar
  98. Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176 CrossRefGoogle Scholar
  99. Velasco I, Fritsch JM (1987) Mesoscale convective complexes in the Americas. J Geophys Res 92(D8):9591–9613CrossRefGoogle Scholar
  100. Vera C, Silvestri G (2009) Precipitation interannual variability in South America from the WCRP-CMIP3 multi-model dataset. Clim Dyn 32:1003–1014. doi:10.1007/s00382-009-0534-7 CrossRefGoogle Scholar
  101. Vera C, Silvestri G, Liebmann B, González P (2006) Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys Res Lett 33:L13707. doi:10.1029/2006GL025759 CrossRefGoogle Scholar
  102. Vernekar AD, Kirtman BP, Fennessy MJ (2003) Low-level jets and their effects on the South American summer climate as simulated by the NCEP ETA model. J Clim 16:297–311CrossRefGoogle Scholar
  103. Wang H, Fu R (2004) Influence of cross-Andes flow on the South American low-level jet. J Clim 17:1247–1262CrossRefGoogle Scholar
  104. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558CrossRefGoogle Scholar
  105. Xue Y, De Sales F, Lau WK-M, Boone A, Feng J, Dirmeyer P, Guo Z, Kim K-M, Kitoh A, Kumar V, Poccard-Leclercq I, Mahowald N, Moufouma-Okia W, Pegion P, Rowell DP, Schemm J, Schubert SD, Sealy A, Thiaw WM, Vintzileos A, Williams SF, Wu M-LiC (2010) Intercomparison and analyses of the climatology of the West African Monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) first model intercomparison experiment. Clim Dyn. doi:10.1007/s00382-010-0778-2 Google Scholar
  106. Zipser EJ, Cecil DJ, Liu C, Nesbitt SW, Yorty DP (2006) Where are the most intense thunderstorms on earth? Bull Am Meteorol Soc 87:1057–1071CrossRefGoogle Scholar
  107. Zou LW, Zhou TJ, Li L, Zhang J (2010) East China Summer rainfall variability of 1958–2000: dynamical downscaling with a variable-resolution AGCM. J Clim 23:6394–6408CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. F. Carril
    • 1
    • 2
    • 3
  • C. G. Menéndez
    • 1
    • 2
    • 3
  • A. R. C. Remedio
    • 5
  • F. Robledo
    • 2
  • A. Sörensson
    • 1
    • 3
  • B. Tencer
    • 2
  • J.-P. Boulanger
    • 4
  • M. de Castro
    • 8
  • D. Jacob
    • 5
  • H. Le Treut
    • 6
  • L. Z. X. Li
    • 6
  • O. Penalba
    • 2
    • 3
  • S. Pfeifer
    • 5
  • M. Rusticucci
    • 2
    • 3
  • P. Salio
    • 1
    • 2
    • 3
  • P. Samuelsson
    • 7
  • E. Sanchez
    • 8
  • P. Zaninelli
    • 1
    • 3
  1. 1.Centro de Investigaciones del Mar y la Atmósfera (CIMA), CONICET-UBACiudad Universitaria, Ciudad Autónoma de Buenos AiresBuenos AiresArgentina
  2. 2.Departamento de Ciencias de la Atmósfera y los Océanos (DCAO), FCENUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.UMI IFAECI/CNRSBuenos AiresArgentina
  4. 4.LOCEAN, UMR CNRS/IRD/UPMCParisFrance
  5. 5.Max Planck Institute for Meteorology (MPI-M)HamburgGermany
  6. 6.Laboratoire de Météorologie Dynamique (LMD), Institut-Pierre-Simon-Laplace et Ecole DoctoraleSciences de l’Environnement en Ile de FranceParisFrance
  7. 7.Swedish Meteorological and Hydrological Institute (SMHI)NorrköpingSweden
  8. 8.Universidad de Castilla-La Mancha (UCLM)ToledoSpain

Personalised recommendations