Advertisement

Climate Dynamics

, Volume 41, Issue 5–6, pp 1475–1495 | Cite as

Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation?

  • Steven C. Chan
  • Elizabeth J. Kendon
  • Hayley J. Fowler
  • Stephen Blenkinsop
  • Christopher A. T. Ferro
  • David B. Stephenson
Article

Abstract

Three different resolution (50, 12, and 1.5 km) regional climate model simulations are compared in terms of their ability to simulate moderate and high daily precipitation events over the southern United Kingdom. The convection-permitting 1.5-km simulation is carried out without convective parametrisation. As in previous studies, increasing resolution (especially from 50 to 12 km) is found to improve the representation of orographic precipitation. The 50-km simulation underestimates mean precipitation over the mountainous region of Wales, and event intensity tends to be too weak; this bias is reduced in both the 12- and 1.5-km simulations for both summer and winter. In south–east England lowlands where summer extremes are mostly convective, increasing resolution does not necessary lead to an improvement in the simulation. For the 12-km simulation, simulated daily extreme events are overly intense. Even though the average intensity of summer daily extremes is improved in the 1.5-km simulation, this simulation has a poorer mean bias with too many events exceeding high thresholds. Spatial density and clustering of summer extremes in south–east England are poorly simulated in both the 12- and 1.5-km simulations. In general, we have not found any clear evidence to show that the 1.5-km simulation is superior to the 12-km simulation, or vice versa at the daily level.

Keywords

High resolution models Dynamical downscaling Hydroclimate Precipitation 

Notes

Acknowledgments

This research is part of the CONVEX project—a collaboration between Newcastle University, the Met Office, and the University of Exeter. CONVEX is supported by the United Kingdom NERC Changing Water Cycle programme (grant NE/I006680/1), and the presented model simulations are supported by the Met Office. The lead author is financially supported by Newcastle University, and is a visiting scientist at the Met Office Hadley Centre in Exeter, United Kingdom.

References

  1. Allan RP, Soden BJ, John VO, Ingram W, Good P (2010) Current changes in tropical precipitation. Environ Res Lett 5(2):025205. doi: 10.1088/1748-9326/5/2/025205 CrossRefGoogle Scholar
  2. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232CrossRefGoogle Scholar
  3. Antic S, Laprise R, Denis B, de Elía R (2006) Testing the downscaling ability of a one-way nested regional climate model in regions of complex topography. Clim Dyn 26(2–3):305–325. doi: 10.1007/s00382-005-0046-z CrossRefGoogle Scholar
  4. Arakawa A (2004) The cumulus parameterization problem: past, present, and future. J Climate 17(13):2493–2525. doi: 10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2 Google Scholar
  5. Arakawa A, Lamb VR (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput Phys 17:173–265Google Scholar
  6. Besag JE (1977) Comments on ripley’s paper. J R Stat Soc 39(2):193–195Google Scholar
  7. Blackburn M, Methven J, Roberts N (2008) Large-scale context for the uk floods in summer 2007. Weather 63(9):280–288. doi: 10.1002/wea.322 CrossRefGoogle Scholar
  8. Charney JG, Phillips NA (1953) Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows. J Meteorol 10:71–99. doi: 10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2
  9. Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Stainforth A, White AA, Wood N (2005) A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Q J R Meteorol Soc 131(608):1759–1782. doi: 10.1256/qj.04.101 CrossRefGoogle Scholar
  10. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hölm EV, Isaksen L, Kallberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park PK, Peubey C, de Rosnay P, Tavolato C, Thêpaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  11. Déqué M, Piedelievre JP (1995) High resolution climate simulation over Europe. Clim Dyn 11:321–339CrossRefGoogle Scholar
  12. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap, monographs on statistics and applied probability, vol 57. Chapman and Hall, New YorkGoogle Scholar
  13. Ensor LA, Robeson SM (2008) Statistical characteristics of daily precipitation: comparisons of gridded and point datasets. J Appl Meteorol Clim 47:2468–2476. doi: 10.1175/2008JAMC1757.1 CrossRefGoogle Scholar
  14. Essery R, Best M, Cox P (2001) MOSES 2.2 technical documentation. Hadley Centre Technical Note 30, Hadley Centre, Met Office, Fitzroy Road, Exeter, UKGoogle Scholar
  15. Faulkner D (1999) Flood estimation handbook, vol 2. Rainfall frequency estimation. NERC Centre for Ecology and HydrologyGoogle Scholar
  16. Fowler HJ, Ekström M (2009) Multi-model ensemble estimates of climate change impacts on UK seasonal precipitation extremes. Int J Climatol 29:385–416CrossRefGoogle Scholar
  17. Fowler HJ, Ekstrom M, Blenkinsop S, Smith AP (2007) Estimating change in extreme European precipitation using a multi-model ensemble. J Geophys Res 112(D18):art No. D18104Google Scholar
  18. Giorgi F, Marinucci MR (1996) An investigation of the sensitivity of simulated precipitation to the model resolution and its implication for climate studies. Mon Weather Rev 124:148–166. doi: 10.1175/1520-0493(1996)124<0148:AIOTSO>2.0.CO;2
  19. Golding BW (1998) Nimrod: a system for generating automated very short range forecasts. Meteorol Appl 5:1–16CrossRefGoogle Scholar
  20. Gregory D, Rowntree PR (1990) A mass-flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. Mon Weather Rev 118:1483–1506. doi: 10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2
  21. Hohenegger C, Brockhaus P, Schär C (2008) Towards climate simulations at cloud-resolving scales. Meteorol Z 17(4):383–394. doi: 10.1127/0941-2948/2008/0303 CrossRefGoogle Scholar
  22. Hong SY, Leetmaa A (1999) An evaluation of the ncep rsm for regional climate modeling. J Climate 12(2):592–609. doi: 10.1175/1520-0442(1999)012<0592:AEOTNR>2.0.CO;2 Google Scholar
  23. Jones RG, Murphy JM, Noguer M (1995) Simulation of climate change over Europe using a nested regional–climate model. I: assessment of control climate, including sensitivity to location of lateral boundaries. Q J R Meteorol Soc 121:1413–1449Google Scholar
  24. Jones RG, Murphy JM, Noguer M, Keen AB (1997) Simulation of climate change over Europe using a nested regional–climate model. II: comparison of driving and regional model responses to a doubling of carbon dioxide concentration. Q J R Meteorol Soc 123:265–292Google Scholar
  25. Kendon EJ, Roberts NM, Senior CA, Roberts MJ (2012) Realism of rainfall in a very high-resolution regional climate model. J Climate 25:5791–5806. doi: 10.1175/JCLI-D-11-00562.1 Google Scholar
  26. Knote C, Heinemann G, Rockel B (2010) Changes in weather extremes: assessment of return values using high resolution climate smulations at convection-resolving scale. Meteorol Z 19(1):11–23. doi: 10.1127/0941-2948/2010/0424 CrossRefGoogle Scholar
  27. Laprise R, de Elía R, Caya D, Biner S, Lucas-Picher P, Diaconescu E, Leduc M, Alexandru A, Separovic L (2008) Challenging some tenets of regional climate modelling. Meteorol Atmos Phys 100(1-4):3–22. doi: 10.1007/s00703-008-0292-9 CrossRefGoogle Scholar
  28. Lean HW, Clark PA, Dixon M, Roberts NM, Fitch A, Forbes R, Halliwell C (2008) Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon Weather Rev 136:3408–3424. doi: 10.1175/2008MWR2332.1 CrossRefGoogle Scholar
  29. Leduc M, Laprise R (2009) Regional climate model sensitivity to domain size. Clim Dyn 32(6):833–854. doi: 10.1007/s00382-008-0400-z CrossRefGoogle Scholar
  30. Lilly DK (1962) On the numerical simulation of buoyant convection. Tellus A 14:148–171CrossRefGoogle Scholar
  31. Maraun D, Rust HW, Osborn TJ (2009) The annual cycle of heavy precipitation across the United Kingdom: a model based on extreme value statistics. Int J Climatol 29(12):1731–1744. doi: 10.1002/joc.1811 CrossRefGoogle Scholar
  32. Meehl GA, Karl T, Easterling DR, Changnon S, Changnon D, Pielke R Jr, Evans J, Groisman PY, Knutson TR, Kunkel KE, Mearns LO, Parmesan C, Pulwarty R, Root T, Sylves RT, Whetton P, Zwiers F (2000) An introduction to trends in extreme weather and climate events: observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull Am Meteorol Soc 81(3):413–416. doi: 10.1175/1520-0477(2000)081<0413:AITTIE>2.3.CO;2
  33. Molinari J, Dudek M (1992) Parameterization of convective precipitation in mesoscale numerical models: a critical review. Mon Weather Rev 120(2):326–344. doi: 10.1175/1520-0493(1992)120<0326:POCPIM>2.0.CO;2 Google Scholar
  34. Perry M, Hollis D, Elms M (2009) The generation of daily gridded datasets of temperature and rainfall for the UK. Met Office National Climate Information Centre, FitzRoy Road, Exeter, Devon EX1 3PB, UKGoogle Scholar
  35. Rauscher SA, Coppola E, Piani C, Giorgi F (2010) Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim Dyn 35(4):685–711. doi: 10.1007/s00382-009-0607-7 CrossRefGoogle Scholar
  36. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J Climate 20:5473–5496CrossRefGoogle Scholar
  37. Ripley BD (1977) Modelling spatial patterns. J R Stat Soc 39(2):172–212Google Scholar
  38. Ripley BD (1979) Tests of ‘randomness’ for spatial point patterns. J R Stat Soc 41(3):368–374Google Scholar
  39. Roberts NM, Lean HW (2008) Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon Weather Rev 136:78–97. doi: 10.1175/2007MWR2123.1 CrossRefGoogle Scholar
  40. Roberts NM, Cole S, Forbes RM, Moore R, Boswell D (2009) Use of high-resolution NWP rainfall and river flow forecasts for advanced warning of the Carlisle flood, north–west England. Meteorol Appl 16(1):23–34. doi: 10.1002/met.94 CrossRefGoogle Scholar
  41. Seth A, Giorgi F (1998) The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J Climate 11:2698–2712. doi: 10.1175/1520-0442(1998)011<2698:TEODCO>2.0.CO;2
  42. Smagorinsky J (1963) General circulation experiments with the primitive equations, part 1: the basic experiments. Mon Weather Rev 91:99–164CrossRefGoogle Scholar
  43. Wakazuki Y, Nakamura M, Kanada S, Muroi C (2008) Climatological reproducibility evaluation and future climate projection of extreme precipitation events in the Baiu season using a high-resolution non-hydrostatic RCM in comparison with an AGCM. J Meteorol Soc Jpn 86(6):951–967CrossRefGoogle Scholar
  44. Walters DN, Best MJ, Bushell AC, Copsey D, Edwards JM, Falloon PD, Harris CM, Lock AP, Manners JC, Morcrette CJ, Roberts MJ, Stratton RA, Webster S, Wilkinson JM, Willett MR, Boutle IA, Earnshaw PD, Hill PG, MacLachlan C, Martin GM, Moufouma-Okia W, Palmer MD, Petch JC, Rooney GG, Scaife AA, Williams KD (2011) The Met Office Unified Model global atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations. Geosci Model Devel 4:919–941. doi: 10.5194/gmd-4-919-2011 CrossRefGoogle Scholar
  45. Wigley TML, Lough JM, Jones PD (1984) Spatial patterns of precipitation in england and wales and a revised, homogeneous england and wales precipitation series. Int J Climatol 4(1):1–25. doi: 10.1002/joc.3370040102 Google Scholar
  46. Wilks DS (1997) Resampling hypothesis tests for autocorrelated fields. J Climate 10:65–82CrossRefGoogle Scholar
  47. Wilson DR, Ballard SP (1999) A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Q J R Meteorol Soc 125:1607–1636CrossRefGoogle Scholar
  48. Wilson DR, Bushell AC, Kerr-Munslow AM, Price JD, Morcrette CJ (2008) PC2: A prognostic cloud fraction and condensation scheme. I: scheme description. Q J R Meteorol Soc 134:2093–2107. doi: 10.1002/qj.333 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Steven C. Chan
    • 1
  • Elizabeth J. Kendon
    • 2
  • Hayley J. Fowler
    • 1
  • Stephen Blenkinsop
    • 1
  • Christopher A. T. Ferro
    • 3
  • David B. Stephenson
    • 2
    • 3
  1. 1.School of Civil Engineering and GeosciencesNewcastle UniversityNewcastle upon TyneUK
  2. 2.Met Office Hadley CentreExeterUK
  3. 3.College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK

Personalised recommendations