Climate Dynamics

, Volume 41, Issue 11–12, pp 3025–3037 | Cite as

Evaluation and response of winter cold spells over Western Europe in CMIP5 models

Article

Abstract

This paper is dedicated to the analysis of winter cold spells over Western Europe in the simulations of the 5th phase of the Coupled Model Intercomparison Project (CMIP5). Both model biases and responses in a warming climate are discussed using historical simulations and the 8.5 W/m2 Representative Concentration Pathway (RCP8.5) scenario, respectively on the 1979–2008 and 2070–2099 periods. A percentile-based index (10th percentile of daily minimum temperature, Q10) with duration and spatial extent criteria is used to define cold spells. Related diagnostics (intensity, duration, extent, and severity as a combination of the former three statistics) of 13 models are compared to observations and suggest that models biases on severity are mainly due to the intensity parameter rather than to duration and extent. Some hypotheses are proposed to explain these biases, that involve large-scale dynamics and/or radiative fluxes related to clouds. Evolution of cold spells characteristics by the end of the century is then discussed by comparing RCP8.5 and historical simulations. In line with the projected rise of mean temperature, “present-climate” cold spells (computed with the 1979–2008 10th percentile, Q10P) are projected to be much less frequent and, except in one model, less severe. When cold spells are defined from the future 10th percentile threshold (“future-climate” cold spells, Q10F), all models simulate a decrease of their intensity linearly related to the seasonal mean warming. Some insights are given to explain the inter-model diversity in the magnitude of the cold spells response. In particular, the snow-albedo feedback is suggested to play an important role, while for some models changes in large-scale dynamics are also not negligible.

Keywords

Climate extremes Cold spells European climate CMIP5 models Models evaluation 

References

  1. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Ambenje P, Rupa Kumar, Revadekar J, Griffiths G (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111. doi:10.1029/2005JD006290
  2. Ballester J, Giorgi F, Rodó J (2010) Changes in European temperature extremes can be predicted from changes in PDF central statistics: a letter. Clim Change 98:277–284CrossRefGoogle Scholar
  3. Brown SJ, Caesar J, Ferro AT (2008) Global changes in daily extreme temperatures since 1950. J Geophys Res 113:D05115CrossRefGoogle Scholar
  4. Cassou C (2008) Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic oscillation. Nature 455(7212):523–527. doi:10.1038/nature07286 CrossRefGoogle Scholar
  5. Cattiaux J, Vautard R, Cassou C, Yiou P, Masson-Delmotte V, Codron F (2010) Winter 2010 in Europe: a cold extreme in a warming climate. Geophys Res Lett 37:L20704. doi:10.1029/2010GL044613 CrossRefGoogle Scholar
  6. Cattiaux J, Vautard R, Yiou P (2011) North-Atlantic SST amplied recent wintertime European land temperature extremes and trends. Clim Dyn 36(11–12):2113–2128. doi:10.1007/s00382-010-0869-0 CrossRefGoogle Scholar
  7. Cattiaux J, Douville H, Peings Y (2012) European temperatures in CMIP5: origins of present-day biases and future uncertainties. Submitted to Clim. DynGoogle Scholar
  8. Christidis N, Stott P, Brown S, Hegerl G, Caesar J (2005) Detection of changes in temperature extremes during the second half of the 20th century. Geophys Res Lett 32(20). doi: 10.1029/2005GL023885
  9. Dai A, Hu A, Meehl GA, Washington WM, Strand WG (2005) Atlantic thermohaline circulation in a coupled general circulation model: unforced variations versus forced changes. J Clim 18:3270–3293CrossRefGoogle Scholar
  10. de Vries H, Haarsma RJ, Hazeleger W (2012) Western European cold spells in current and future climate. Geophys Res Lett 39:L04706. doi:10.1029/2011GL050665 CrossRefGoogle Scholar
  11. Easterling DR, Evans JL, Ya P, Groisman et al (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteor Soc 81(3)Google Scholar
  12. Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 19:193–212CrossRefGoogle Scholar
  13. Guirguis K, Gershunov A, Schwartz R, Bennett S (2011) Recent warm and cold daily winter temperature extremes in the Northern Hemisphere. Geophys Res Lett 38:L17701. doi:10.1029/2011GL048762 CrossRefGoogle Scholar
  14. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi:10.1029/2008JD010201 CrossRefGoogle Scholar
  15. Hegerl GC, Zwiers FW, Stott PA, Kharin VV (2004) Detectability of anthropogenic changes in annual temperature and precipitation extremes. J Clim 17:3683–3700CrossRefGoogle Scholar
  16. Heino R et al (1999) Progress in the study of climate extremes in northern and central Europe. Clim Change 42:151–181CrossRefGoogle Scholar
  17. Huynen MM, Martens P, Schram D, Weijenberg MP, Kunst AE (2001) The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ Health Perspect 109:463–470CrossRefGoogle Scholar
  18. IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. In: Solomon S, Qin, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge University Press, Cambridge, p 996Google Scholar
  19. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NMC/NCAR 40-Year reanalysis project. Bull Am Meteor Soc 77:437–471CrossRefGoogle Scholar
  20. Kodra E, Steinhaeuser K, Ganguly AR (2011) Persisting cold extremes under 21st-century warming scenarios. Geophys Res Lett 38:L08705. doi:10.1029/2011GL047103 CrossRefGoogle Scholar
  21. Levis S, Bonan GB, Lawrence PJ (2007) Present-day springtime high-latitude surface albedo as a predictor of simulated climate sensitivity. Geophys Res Lett 34:L17703. doi:10.1029/2007GL030775 CrossRefGoogle Scholar
  22. Mc Michael AJ, Campbell-Lendrum DH, Corvalan CF, Ebi KL, Githelo A, Scheraga JD, Woodward A (2003) Climate change and human health: risks and responses. World Health Organ, GenevaGoogle Scholar
  23. McGregor GR, Ferro CA, Stephenson DB (2005) Projected changes in extreme weather and climate events in Europe. Extreme Weather Clim Events Public Health Responses Part 1:13–23. doi:10.1007/3-540-28862-7_2 CrossRefGoogle Scholar
  24. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997CrossRefGoogle Scholar
  25. Meehl GA, Tebaldi C, Nychka D (2004) Changes in frost days in simulations of twenty-first century climate. Clim Dyn 23:495–511. doi:10.1007/s00382-004-0442-9 CrossRefGoogle Scholar
  26. Overland JE, Wang M (2010) Large-scale atmospheric circulation changes associated with the recent loss of Arctic sea ice. Tellus 62A:1–9Google Scholar
  27. Petoukhov V, Semenov VA (2010) A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res 115:D21111. doi:10.1029/2009JD013568 CrossRefGoogle Scholar
  28. Qu X, Hall A (2006) Assessing snow albedo feedback in simulated climate change. J Clim 19: 2617–2630, doi:10.1175/JCLI3750
  29. Räisänen J, Ylhäisi JS (2011) Cold months in a warming climate. Geophys Res Lett 38:L22704. doi:10.1029/2011GL049758 CrossRefGoogle Scholar
  30. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  31. Tebaldi C, Hayhoe K, Arblaster JM, Meehl GE (2006) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79:185–211CrossRefGoogle Scholar
  32. Vavrus SJ, Walsh JE, Chapman WL, Portis D (2006) The behavior of extreme cold air outbreaks under greenhouse warming. Int J Climatol 26:1133–1147CrossRefGoogle Scholar
  33. Vellinga M, Wood RA (2002) The atmospheric response to a THC collapse: scaling relations for the Hadley circulation and the nonlinear response in a coupled climate model. Clim Change 54:251–267CrossRefGoogle Scholar
  34. Whitlock CH, Charlock TP, Staylor WF, Pinker RT, Laszlo I, Di Pasquale RC, Ritchey NA (1993) WCRP surface radiation budget shortwave data product description—Version 1.1. NASA Technical Memorandum 107747, National Technical Information Service, Springfield, VirginiaGoogle Scholar
  35. Zhang X, Alexander L, Hegerl GC, Jones PD, Klein-Tank A, Peterson TC, Trewin B, Zwiers F (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim Change. doi:10.1002/wcc.147

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.CNRM-GAME, Météo-France and CNRSToulouseFrance
  2. 2.CNRM/GMGEC/VDRToulouse Cedex 01France

Personalised recommendations