Climate Dynamics

, Volume 41, Issue 7–8, pp 2019–2038

Influence of tropical cyclones on sea surface temperature seasonal cycle and ocean heat transport

  • Emmanuel M. Vincent
  • Gurvan Madec
  • Matthieu Lengaigne
  • Jérôme Vialard
  • Ariane Koch-Larrouy
Article

Abstract

Recent studies suggested that tropical cyclones (TCs) contribute significantly to the meridional oceanic heat transport by injecting heat into the subsurface through mixing. Here, we estimate the long-term oceanic impact of TCs by inserting realistic wind vortices along observed TCs tracks in a 1/2° resolution ocean general circulation model over the 1978–2007 period. Warming of TCs’ cold wakes results in a positive heat flux into the ocean (oceanic heat uptake; OHU) of ~480 TW, consistent with most recent estimates. However, ~2/5 of this OHU only compensates the heat extraction by the TCs winds during their passage. Another ~2/5 of this OHU is injected in the seasonal thermocline and hence released back to the atmosphere during the following winter. Because of zonal compensations and equatorward transport, only one-tenth of the OHU is actually exported poleward (46 TW), resulting in a marginal maximum contribution of TCs to the poleward ocean heat transport. Other usually neglected TC-related processes however impact the ocean mean state. The residual Ekman pumping associated with TCs results in a sea-level drop (rise) in the core (northern and southern flanks) of TC-basins that expand westward into the whole basin as a result of planetary wave propagation. More importantly, TC-induced mixing and air-sea fluxes cool the surface in TC-basins during summer, while the re-emergence of subsurface warm anomalies warms it during winter. This leads to a ~10 % reduction of the sea surface temperature seasonal cycle within TCs basins, which may impact the climate system.

Keywords

Tropical cyclones Ocean heat transport Seasonal cycle SST 

References

  1. Axell LB (2002) Wind-driven internal waves and langmuir circulations in a numerical ocean model of the southern baltic sea. J Geophys Res 107. doi:10.1029/2001JC000922
  2. Biastoch A, Böning CW, Schwarzkopf FU, Lutjeharms JRE (2009) Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies. Nature 462. doi:10.1038/nature08519
  3. Blanke B, Delecluse P (1993) Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J Phys Oceanogr 23(7):1363–1388CrossRefGoogle Scholar
  4. Boccaletti G, Ferrari R, Fox-Kemper B (2007) Mixed layer instabilities and restratification. J Phys Oceanogr 37:2228–2250CrossRefGoogle Scholar
  5. Burchard H (2002) Energy-conserving discretisation of turbulent shear and buoyancy production. Ocean Model 4:347–361. doi:10.1016/S1463-5003(02)00009-4 CrossRefGoogle Scholar
  6. Emanuel KA (1986) An air-sea interaction theory for tropical cyclones. Part 1: Steady-state maintenance. J Atmos Sci 43(6):585–604CrossRefGoogle Scholar
  7. Emanuel KA (2001) Contribution of tropical cyclones to meridional heat transport by the oceans. J Geophys Res 106(14):771–781Google Scholar
  8. Emanuel KA (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688. doi:10.1038/nature03906 CrossRefGoogle Scholar
  9. Enfield DB, Allen JS (1983) The generation and propagation of sea level variability along the Pacific coast of Mexico. J Phys Oceanogr 13(6):1012–1033CrossRefGoogle Scholar
  10. Fasullo JT, Trenberth KE (2008) The annual cycle of the energy budget. Part II: Meridional structures and poleward transports. J Clim 21:2314–2326Google Scholar
  11. Gill AE (1982) Atmosphere-Ocean dynamics, vol 30. Academic Press, New YorkGoogle Scholar
  12. Griffies S et al (2009) Coordinated ocean-ice reference experiments (COREs). Ocean Model 26:1–46. doi:10.1016/j.ocemod.2008.08.007 CrossRefGoogle Scholar
  13. Halliwell GR, Shay LK, Brewster JK, Teague WJ (2011) Evaluation and sensitivity analysis of an ocean model response to Hurricane Ivan. Mon Wea Rev 139:921–945CrossRefGoogle Scholar
  14. Hart RE (2011) An inverse relationship between aggregate northern hemisphere tropical cyclone activity and subsequent winter climate. Geophys Res Lett 38:L01705. doi:10.1029/2010GL045612 CrossRefGoogle Scholar
  15. Jansen MF, Ferrari R (2009) Impact of the latitudinal distribution of tropical cyclones on ocean heat transport. Geophys Res Lett 36:L06604CrossRefGoogle Scholar
  16. Jansen MF, Ferrari R, Mooring TA (2010) Seasonal versus permanent thermocline warming by tropical cyclones. Geophys Res Lett 37:L03602. doi:10.1029/2009GL041808 CrossRefGoogle Scholar
  17. Jullien S, Menkes CE, Marchesiello P, Jourdain NC, Lengaigne M, Koch-Larrouy A, Lefèvre J, Vincent EM, Faure V (2012) Impact of tropical cyclones on the heat budget of the South Pacific Ocean. J Phys Oceanogr (in press)Google Scholar
  18. Keerthi MG, Lengaigne M, Vialard J, de Boyer Montégut C, Muraleedharan PM (2012) Interannual variability of the Tropical Indian Ocean mixed layer depth. Clim Dyn. doi:10.1007/s00382-012-1295-2
  19. Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ (2010) The international best track archive for climate stewardship (IBTrACS): unifying tropical cyclone data. Bull Am Meteorol Soc 10:363–376. doi:10.1175/2009BAMS2755.1 Google Scholar
  20. Korty RL, Emanuel KA, Scott JR (2008) Tropical cyclone-induced upper-ocean mixing and climate: application to equable climates. J Clim 21:638–654Google Scholar
  21. Large W, Yeager S (2009) The global climatology of an interannually varying air–sea flux data set. Clim Dyn 33:341–364CrossRefGoogle Scholar
  22. Le Vaillant X, Cuypers Y, Bouruet-Aubertot P, Vialard J, McPhaden MJ (2012) Tropical storm-induced near-inertial internal waves during the Cirene experiment: energy fluxes and impact on vertical mixing. J Geophys Res (in revision)Google Scholar
  23. Lengaigne M, Haussman U, Madec G, Menkes C, Vialard J (2012) Mechanisms controlling Warm Water Volume interannual variations in the Equatorial Pacific: diabatic versus adiabatic processes. Clim Dyn 38(5–6):1031–1046. doi:10.1007/s00382-011-1051-z CrossRefGoogle Scholar
  24. Locarnini RA et al (2010) World ocean atlas 2009, vol 1: Temperature. In: Levitus S (ed) NOAA atlas NESDIS 68. US Government Printing Office, WashingtonGoogle Scholar
  25. Madec G (2008) NEMO ocean engine, Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, ISSN no 27:1288–1619Google Scholar
  26. Manucharyan GE, Brierley CM, Fedorov AV (2011) Climate impacts of intermittent upper ocean mixing induced by tropical cyclones. J Geophys Res 116:C11038. doi:10.1029/2011JC007295 CrossRefGoogle Scholar
  27. Marsaleix P et al (2008) Energy conservation issues in sigma-coordinate free-surface ocean models. Ocean Model 20:61–89. doi:10.1016/j.ocemod.2007.07.005 CrossRefGoogle Scholar
  28. Mellor G, Blumberg A (2004) Wave breaking and ocean surface layer thermal response. J Phys Oceanogr 34(3):693–698. doi:10.1175/2517.1 CrossRefGoogle Scholar
  29. Neetu M, Lengaigne M, Vincent EM, Vialard J, Madec G, Samson G, Kumar R, Durand F (2012) Influence of upper-ocean stratification on tropical cyclones-induced surface cooling in the Bay of Bengal. J Geophys Res (in revision)Google Scholar
  30. Nidheesh AG, Lengaigne M, Vialard J, Unnikrishnan AS, Dayan H (2012) Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean. Clim Dyn. doi:10.1007/s00382-012-1463-4
  31. Park JJ, Kwon YO, Price JF (2011) Argo array observation of ocean heat content changes induced by tropical cyclones in the North Pacific. J Geophys Res 116:C12025. doi:10.1029/2011JC007165 CrossRefGoogle Scholar
  32. Penduff T et al (2010) Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales. Ocean Sci 6:269–284CrossRefGoogle Scholar
  33. Price JF, Morzel J, Niiler PP (2008) Warming of SST in the cool wake of a moving hurricane. J Geophys Res 113:C07010. doi:10.1029/2007JC004393 CrossRefGoogle Scholar
  34. Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Fogli PG, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high resolution coupled general circulation model. J Clim 24(16):4368–4384. doi:10.1175/2011JCLI4104.1 CrossRefGoogle Scholar
  35. Sriver RL, Huber M, Nusbaumer J (2008) Investigating tropical cyclone-climate feedbacks using the TRMM Microwave Imager and the Quick Scatterometer. Geochem Geophys Geosyst 9:Q09V11. doi:10.1029/2007GC001842
  36. Sriver RL, Goes M, Mann ME, Keller K (2010) Climate response to tropical cyclone-induced ocean mixing in an Earth system model of intermediate complexity. J Geophys Res 115. doi:10.1029/2010JC006106
  37. Trenberth KE, Fasullo J (2007) Water and energy budgets of hurricanes and implications for climate change. J Geophys Res 112:D23107. doi:10.1029/2006JD008304 CrossRefGoogle Scholar
  38. Vincent EM, Lengaigne M, Madec G, Vialard J, Samson G, Jourdain NC, Menkes CE, Jullien S (2012a) Processes setting the characteristics of Sea Surface Cooling induced by Tropical Cyclones. J Geophys Res 117:C02020. doi:10.1029/2011JC007396 CrossRefGoogle Scholar
  39. Vincent EM, Vialard J, Lengaigne M, Madec G, Masson S, Jourdain NC (2012b) Assessing the oceanic control on the amplitude of sea surface cooling induced by tropical cyclones. J Geophys Res 117:C05023. doi:10.1029/2011JC007705 CrossRefGoogle Scholar
  40. Willoughby HE, Darling RWR, Rahn ME (2006) Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon Wea Rev 134:1102–1120CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Emmanuel M. Vincent
    • 1
  • Gurvan Madec
    • 1
    • 2
  • Matthieu Lengaigne
    • 1
  • Jérôme Vialard
    • 1
  • Ariane Koch-Larrouy
    • 3
  1. 1.LOCEAN-IPSL, IRD/CNRS/UPMC/MNHNParis Cedex 5France
  2. 2.NOCSouthamptonUK
  3. 3.LEGOS, IRD/CNRS/UPSToulouseFrance

Personalised recommendations