Climate Dynamics

, Volume 41, Issue 3–4, pp 735–754 | Cite as

Alpine snow cover in a changing climate: a regional climate model perspective

  • Christian Steger
  • Sven KotlarskiEmail author
  • Tobias Jonas
  • Christoph Schär


An analysis is presented of an ensemble of regional climate model (RCM) experiments from the ENSEMBLES project in terms of mean winter snow water equivalent (SWE), the seasonal evolution of snow cover, and the duration of the continuous snow cover season in the European Alps. Two sets of simulations are considered, one driven by GCMs assuming the SRES A1B greenhouse gas scenario for the period 1951–2099, and the other by the ERA-40 reanalysis for the recent past. The simulated SWE for Switzerland for the winters 1971–2000 is validated against an observational data set derived from daily snow depth measurements. Model validation shows that the RCMs are capable of simulating the general spatial and seasonal variability of Alpine snow cover, but generally underestimate snow at elevations below 1,000 m and overestimate snow above 1,500 m. Model biases in snow cover can partly be related to biases in the atmospheric forcing. The analysis of climate projections for the twenty first century reveals high inter-model agreement on the following points: The strongest relative reduction in winter mean SWE is found below 1,500 m, amounting to 40–80 % by mid century relative to 1971–2000 and depending upon the model considered. At these elevations, mean winter temperatures are close to the melting point. At higher elevations the decrease of mean winter SWE is less pronounced but still a robust feature. For instance, at elevations of 2,000–2,500 m, SWE reductions amount to 10–60 % by mid century and to 30–80 % by the end of the century. The duration of the continuous snow cover season shows an asymmetric reduction with strongest shortening in springtime when ablation is the dominant factor for changes in SWE. We also find a substantial ensemble-mean reduction of snow reliability relevant to winter tourism at elevations below about 1,800 m by mid century, and at elevations below about 2,000 m by the end of the century.


Climate change Regional climate projections European Alps Snow water equivalent Snow cover duration ENSEMBLES 



The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract number 505539) whose support is gratefully acknowledged. We also acknowledge the E-OBS dataset from the ENSEMBLES project and the data providers in the ECA&D project ( Partial funding for this study has been provided by the Swiss National Science Foundation via NCCR Climate. We would also like to thank Daniel Lüthi and C2SM for model and data support, and three anonymous reviewers for their very helpful and constructive input.

Supplementary material

382_2012_1545_MOESM1_ESM.pdf (4.5 mb)
Supplementary material 1 (PDF 4623 kb)


  1. Abegg B (1996) Klimaänderung und Tourismus. Klimafolgenforschung am Beispiel des Wintertourismus in den Schweizer Alpen. Vdf Zurich, ZurichGoogle Scholar
  2. Abegg B, Agrawala S, Crick F, de Montfalcon A (2007) Climate change impacts and adaptation in winter tourism. In: Agrawala S (ed) Climate change in the European Alps. Adapting winter tourism and natural hazards management. OECD, Paris, pp 25–60Google Scholar
  3. Adam JC, Lettenmaier DP (2003) Adjustment of global gridded precipitation for systematic bias. J Geophys Res 108:4257. doi: 10.1029/2002JD002499 CrossRefGoogle Scholar
  4. Armstrong RL, Brun E (2008) Snow and climate: physical processes, surface energy exchange and modeling. Cambridge University Press, CambridgeGoogle Scholar
  5. Bavay M, Lehning M, Jonas T, Löwe H (2009) Simulations of future snow cover and discharge in Alpine headwater catchments. Hydrol Process 23:95–108. doi: 10.1002/hyp.7195 CrossRefGoogle Scholar
  6. Beniston M, Keller F, Koffi B, Goyette S (2003) Estimates of snow accumulation and volume in the Swiss Alps under changing climatic conditions. Theor Appl Climatol 76:125–140. doi: 10.1007/s00704-003-0016-5 CrossRefGoogle Scholar
  7. Bosshard T, Carambia M, Goergen K, Kotlarski S, Krahe P, Zappa M, Schär C (2011) Quantifying uncertainty sources in hydrological climate impact scenarios. Water Resour Res (submitted)Google Scholar
  8. Brown RD, Mote PW (2009) The response of northern Hemisphere snow cover to a changing climate. J Clim 22:2124–2145. doi: 10.1175/2008JCLI2665.1 CrossRefGoogle Scholar
  9. Buerki R (2000) Klimaänderung und Wintertourismus im Obertoggenburg. In: Natur Forschung in der Region St. Gallen, Berichte der St. Gallischen (eds) Naturwissenschaftlichen Gesellschaft. 89:97–109Google Scholar
  10. CH2011 (2011) Swiss climate change scenarios CH2011. Published by C2SM, MeteoSwiss, ETH, NCCR Climate, and OcCC. Zurich, Switzerland, ISBN 978-3 033-03065-7, 88 pp [available at]
  11. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81:7–30. doi: 10.1007/s10584-006-9210-7 CrossRefGoogle Scholar
  12. Dutra E, Kotlarski S, Viterbo P, Balsamo G, Miranda PMA, Schaer C, Bissolli P, Jonas T (2011) Snow cover sensitivity to horizontal resolution, parameterizations and atmospheric forcing in a land surface model. J Geophys Res 116:D21109CrossRefGoogle Scholar
  13. Egli L, Jonas T, Meister R (2009) Comparison of different automatic methods for estimating snow water equivalent. Cold Reg Sci Technol 57:107–115. doi: 10.1016/j.coldregions.2009.02.008 CrossRefGoogle Scholar
  14. Elsasser H, Buerki R (2002) Climate change as a threat to tourism in the Alps. Clim Res 20:253–257CrossRefGoogle Scholar
  15. Foppa N, Stoffel A, Meister R (2007) Synergy of in situ and space borne observation for snow depth mapping in the Swiss Alps. Int J Appl Earth Observ Geoinf 9(3):294–310. doi: 10.1016/j.jag.2006.10.001 CrossRefGoogle Scholar
  16. Fowler HJ, Blekinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modeling. Int J Climatol 27:1547–1578. doi: 10.1002/joc.1556 CrossRefGoogle Scholar
  17. Fyfe JC, Flato GM (1999) Enhanced climate change and its detection over the rocky mountains. J Clim 12:230–243CrossRefGoogle Scholar
  18. Giorgi F, Hurrell JW, Marinucci MR (1997) Elevation dependency of the surface climate change signal: a model study. Clim Change 10:288–296Google Scholar
  19. Giorgi F, Francisco R, Pal J (2003) Effects of a subgrid-scale topography and land use scheme on the simulation of surface climate and hydrology. Part I: effects of temperature and water vapor disaggregation. J Hydromet 4:317–333CrossRefGoogle Scholar
  20. Hall A (2004) The role of surface albedo feedback in climate. Am Meteorol Soc 17:1550–1568Google Scholar
  21. Hänggi P, Angehrn S, Bosshard T, Helland E, Job D, Rietmann D, Schädler B, Schneider R, Weingartner R (2011) Einfluss der Klimaänderung auf die Stromproduktion der Wasserkraftwerke Löntsch und Prättigau. Wasser Energie Luft 103(4):292–299Google Scholar
  22. Hantel M, Hirtl-Wielke L-M (2007) Sensitivity of Alpine snow cover to European temperature. Int J Clim 27:1265–1275CrossRefGoogle Scholar
  23. Hantel M, Maurer C (2011) The median winter snowline in the Alps. Meteorol Z 20(3):267–276CrossRefGoogle Scholar
  24. Haylock MR, Hofstra N, Klein-Tank AMG, Klok EJ (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi: 10.1029/2008JD01201 CrossRefGoogle Scholar
  25. Henderson GR, Leathers DJ (2010) European snow cover extent variability and associations with atmospheric forcings. Int J Climatol 30:1440–1451. doi: 10.1002/joc.1990 Google Scholar
  26. Jonas T, Rixen C, Sturm M, Stoeckli V (2008) How alpine plant growth is linked to snow cover and climate variability. J Geophys Res 113:G03013. doi: 10.1029/2007JG000680 CrossRefGoogle Scholar
  27. Jonas T, Marty C, Magnusson J (2009) Estimating the snow water equivalent from snow depth measurements in the Swiss Alps. J Hydrol 378:161–167. doi: 10.1016/j.jhydrol.2009.09.021 CrossRefGoogle Scholar
  28. Kobierska F, Jonas T, Zappa M, Bavay M, Magnusson J, Bernasconi SM (2012) Future runoff from a partly glacierized watershed in Central Switzerland: a two-model approach. Adv Water Resour (submitted)Google Scholar
  29. Kotlarski S, Bosshard T, Lüthi D, Pall P, Schär C (2012) Elevation gradients of European climate change in the regional climate model COSMO-CLM. Clim Change (in press). doi: 10.1007/s10584-011-0195-5
  30. Laternser M, Schneebeli M (2003) Long-term snow climate trends of the Swiss alps (1931–99). Int J Climatol 23:733–750. doi: 10.1002/joc.921 CrossRefGoogle Scholar
  31. Lenderink G, Buishand A, van Deursen W (2007) Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrol Earth Syst Sci 11(3):1145–1159CrossRefGoogle Scholar
  32. Magnusson J, Jonas T, López-Moreno I, Lehning M (2010) Snow cover response to climate change in a high alpine and half-glacierized basin in Switzerland. Hydrol Res 41(3–4):230–240CrossRefGoogle Scholar
  33. Marchand PJ (1996) Life in the cold: an introduction to winter ecology. University Press of New England, HanoverGoogle Scholar
  34. Martin E, Etchevers P (2005) Impact of climatic changes on snow cover and snow hydrology in the French Alps. Adv Glob Change Res 23:235–242. doi: 10.1007/1-4020-3508-X_24 CrossRefGoogle Scholar
  35. Marty C (2008) Regime shift of snow days in Switzerland. Geophys Res Lett 35:L12501. doi: 10.1029/2008GL022998 CrossRefGoogle Scholar
  36. Nakicenovic N, Swart R (eds) (2000) Emission scenarios. A special report of working group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, EnglandGoogle Scholar
  37. Norris JR, Wild M (2007) Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming”, and solar “brightening”. J Geophys Res 112:D08214. doi: 10.1029/2006JD007794 CrossRefGoogle Scholar
  38. Räisänen J (2008) Warmer climate: less or more snow? Clim Dyn 30:307–319. doi: 10.1007/s00382-007-0289-y CrossRefGoogle Scholar
  39. Räisänen J, Eklund J (2012) 21st century changes in snow climate in Northern Europe: a high-resolution view from ENSEMBLES regional climate models. Clim Dyn 38:2575–2591. doi: 10.1007/s00382-011-1076-3 CrossRefGoogle Scholar
  40. Rangwala I, Miller JR (2012) Climate change in mountains: a review of elevation-dependent warming and its possible causes. Clim Change (in press). doi: 10.1007/s10584-012-0419-3
  41. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17(4):347–348CrossRefGoogle Scholar
  42. Salzmann N, Mearns L (2011) Assessing the performance of multiple regional climate model simulations for seasonal mountain snow in the Upper Colorado River Basin. J Hydrometeor (in press). doi: 10.1175/2011JHM1371.1
  43. Schär C, Davis TD, Frei C, Wanner H, Widmann M, Wild M, Davis HC (1998) Views from the Alps: regional perspectives on climate. MIT press, BostonGoogle Scholar
  44. Scherrer SC, Appenzeller C (2006) Swiss Alpine snow pack variability: major patterns and links to local climate and large-scale flow. Clim Res 32:187–199CrossRefGoogle Scholar
  45. Scott D, McBoyle G (2007) Climate change adaptation in the ski industry. Mitig Adapt Strat Glob Change 12:1411–1431CrossRefGoogle Scholar
  46. Scott D, McBoyle G, Mills B (2003) Climate change and the skiing industry in southern Ontario (Canada): exploring the importance of snowmaking as a technical adaptation. Clim Res 23:171–181CrossRefGoogle Scholar
  47. Sevruk B (1997) Regional dependency of precipitation-altitude relationship in the Swiss Alps. Clim Change 36:355–369CrossRefGoogle Scholar
  48. Stähli M, Raymond-Pralong M, Zappa M, Ludwig A, Paul F, Bosshard T, Dupraz C (2011) Auswirkungen auf die Wasserverfügbarkeit und Stromproduktion an den Beispielen Oberhasli und Mattmark. Wasser Energie Luft 103(4):285–291Google Scholar
  49. Steiger R (2010) The impact of climate change on ski season length and snowmaking requirements in Tyrol, Austria. Clim Res 43:251–262. doi: 10.3354/cr00941 CrossRefGoogle Scholar
  50. Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Quart J Roy Meteor Soc 131:2961–3012CrossRefGoogle Scholar
  51. van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its Impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter 160 ppGoogle Scholar
  52. Voigt T, Fuessel HM, Gaertner-Roer I, Huggel C, Marty C, Zemp M (2010) Impacts of climate change on snow, ice, and permafrost in Europe: observed trends, future projections, and socio-economic relevance—ETC./ACC Technical Paper 2010/13Google Scholar
  53. Wielke L-M, Haimberger L, Hantel M (2004) Snow cover duration in Switzerland compared to Austria. Meteorol Z 13(1):13–17CrossRefGoogle Scholar
  54. Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 62:189–216CrossRefGoogle Scholar
  55. Zemp M, Hoelzle M, Haeberli W (2007) Distributed modelling of the regional climatic equilibrium line altitude of glaciers in the European Alps. Glob Planet Change 56:83–100CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian Steger
    • 1
  • Sven Kotlarski
    • 1
    Email author
  • Tobias Jonas
    • 2
  • Christoph Schär
    • 1
  1. 1.Institute for Atmospheric and Climate ScienceETHZurichSwitzerland
  2. 2.WSL Institute for Snow and Avalanche Research SLFDavosSwitzerland

Personalised recommendations