Climate Dynamics

, Volume 40, Issue 11–12, pp 3023–3046 | Cite as

A multi-physics ensemble of present-day climate regional simulations over the Iberian Peninsula

  • Sonia Jerez
  • Juan Pedro Montavez
  • Pedro Jimenez-Guerrero
  • Juan Jose Gomez-Navarro
  • Raquel Lorente-Plazas
  • Eduardo Zorita


This work assesses the influence of the model physics in present-day regional climate simulations. It is based on a multi-phyiscs ensemble of 30-year long MM5 hindcasted simulations performed over a complex and climatically heterogeneous domain as the Iberian Peninsula. The ensemble consists of eight members that results from combining different parametrization schemes for modeling the Planetary Boundary Layer, the cumulus and the microphysics processes. The analysis is made at the seasonal time scale and focuses on mean values and interannual variability of temperature and precipitation. The objectives are (1) to evaluate and characterize differences among the simulations attributable to changes in the physical options of the regional model, and (2) to identify the most suitable parametrization schemes and understand the underlying mechanisms causing that some schemes perform better than others. The results confirm the paramount importance of the model physics, showing that the spread among the various simulations is of comparable magnitude to the spread obtained in similar multi-model ensembles. This suggests that most of the spread obtained in multi-model ensembles could be attributable to the different physical configurations employed in the various models. Second, we obtain that no single ensemble member outperforms the others in every situation. Nevertheless, some particular schemes display a better performance. On the one hand, the non-local MRF PBL scheme reduces the cold bias of the simulations throughout the year compared to the local Eta model. The reason is that the former simulates deeper mixing layers. On the other hand, the Grell parametrization scheme for cumulus produces smaller amount of precipitation in the summer season compared to the more complex Kain-Fritsch scheme by reducing the overestimation in the simulated frequency of the convective precipitation events. Consequently, the interannual variability of precipitation (temperature) diminishes (increases), which implies a better agreement with the observations in both cases. Although these features improve in general the accuracy of the simulations, controversial nuances are also highlighted.


Parameterization schemes Multi-physics ensemble Regional climate modeling Iberian Peninsula 



This work was funded by the Spanish Ministry of the Environment (project ESCENA, Ref. 200800050084265) and Project CORWES (CGL2010-22158-C02-02). The authors also gratefully acknowledge funding from the Euro-Mediterranean Institute of Water (IEA). Pedro Jiménez-Guerrero acknowledges the Ramón y Cajal Programme. Sonia Jerez thanks the Portuguese Science Foundation (FCT) for her current financial support through the project ENAC (PTDC/AAC-CLI/103567/2008) and Ricardo M. Trigo for his personal scientific support.


  1. Argüeso D, Hidalgo-Muñoz JM, Gámiz-Fortis SR, Esteban-Parra MJ, Dudhia J, Castro-Díez Y (2011) Evaluation of WRF parameterizations for climate studies over Southern Spain using a multi-step regionalization. J Clim 24:5633–5651CrossRefGoogle Scholar
  2. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, et al (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95CrossRefGoogle Scholar
  3. Berg LK, Zhong S (2005) Sensitivity of MM5-Simulated Boundary Layer characteristics to turbulence parameterizations. J Appl Meteorol 44:1467–1483CrossRefGoogle Scholar
  4. Bright DR, Mullen SL (2002) The Sensitivity of the Numerical Simulation of the Southwest Monsoon Boundary Layer to the choice of PBL turbulence parameterization in MM5. Wea Forecast 17(1):99–114CrossRefGoogle Scholar
  5. Castro CL, Pielke RA, Leocini G (2005) Dynamical downscaling: assessment of value retained and added using the regional atmospheric modeling system (RAMS). J Geophys Res 110:D5CrossRefGoogle Scholar
  6. Chen F, Dudhia J (2001) Coupling an advanced land surfacehydrology model with the penn state NCAR MM5 Modeling System. Part I: model implementation and sensitivity. Mon Wea Rev 129(4):569–585CrossRefGoogle Scholar
  7. Chiriaco M, Vautard R, Chepfer H, Haeffelin M, Dudhia J, Wanherdrick Y, Morille Y, Protat A (2006) The ability of MM5 to simulate ice clouds: systematic comparison between simulated and measured fluxes and lidar/radar profiles at the SIRTA atmospheric observatory. Mon Wea Rev 134(3):897–918CrossRefGoogle Scholar
  8. Christensen OB (1999) Relaxation of soil variables in a regional climate model. Tellus A 51(5):674–685CrossRefGoogle Scholar
  9. Colle BA, Mass CF (2000) The 59 February 1996 flooding event over the Pacific Northwest: sensitivity studies and evaluation of the MM5 precipitation forecasts. Mon Wea Rev 128(3):593–617CrossRefGoogle Scholar
  10. de Arellano JVG, Vellinga OS, Holtslag AAM, Bosveld FC, Baltink HK (2001) Observational evaluation of PBL parameterizations modeled by MM5. Preprints 11th PSU/NCAR MM5 Users Workshop, Boulder, CO, NCARGoogle Scholar
  11. Dudhia J (1989) Numerical study of convection observed during the Winter Monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46(20):3077–3107CrossRefGoogle Scholar
  12. Fernandez J, Montavez JP, Saenz J, Gonzalez-Rouco JF, Zorita E (2007) Sensitivity of the MM5 mesoscale model to physical parameterizations for regional climate studies: annual cycle. J Geophys Res 112:D04,101Google Scholar
  13. Ferretti R, Paolucci T, Zheng W, Visconti G, Bonelli P (2000) Analyses of the precipitation pattern on the alpine region using different cumulus convection parameterizations. J Appl Meteorol 39(2):182–200CrossRefGoogle Scholar
  14. Font-Tullot I (2000) Climatologa de Espaa y Portugal. Ed Universidad de Salamanca, SalamancaGoogle Scholar
  15. Forkel R, Knoche R (2006) Regional climate change and its impact on photooxidant concentrations in southern Germany: simulations with a coupled regional chemistry-climate model. J Geophys Res 111:D12,302CrossRefGoogle Scholar
  16. Frank H, Landberg L (1997) Modelling the wind climate of Ireland. Boundary Layer Meteorol 85:359–378CrossRefGoogle Scholar
  17. Gallus WA (1999) Eta simulations of three extreme precipitation events: sensitivity to resolution and convective parameterization. Wea Forecast 14:405–426CrossRefGoogle Scholar
  18. Galos B, Lorenz P, Jacob D (2007) Will dry events occur more often in Hungary in the future?. Environ Res Lett 2(3):034,006CrossRefGoogle Scholar
  19. Gao X, Giorgi F (2008) Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Global Planet Change 62:195–209CrossRefGoogle Scholar
  20. Gianotti RL, Zhang D, Eltahir EAB (2012) Assessment of the regional climate model version 3 over the maritime continent using different cumulus parameterization and land surface schemes. J Clim 25(2):638–656CrossRefGoogle Scholar
  21. Giorgi F, Bi X (2000) A study of internal variability of a regional climate model. J Geophys Res 105(D24):29503–29529CrossRefGoogle Scholar
  22. Giorgi F, Marinucci MR (1996) An investigation of the sensitivity of simulated precipitation to model resolution and its implications for climate studies. Mon Wea Rev 124(1):148–166CrossRefGoogle Scholar
  23. Gochis DJ, Shuttleworth W, Yang ZL (2002) Sensitivity of the modeled North American Monsoon regional climate to convective parameterization. Mon Wea Rev 130(5):1282–1298CrossRefGoogle Scholar
  24. Gomez-Navarro JJ, Montavez JP, Jimenez-Guerrero P, Jerez S, Garcia-Valero JA, Gonzalez-Rouco JF (2010) Warming patterns in regional climate change projections over the Iberian Peninsula. Meteorol Zeitschrift 19(3):275–285CrossRefGoogle Scholar
  25. Gomez-Navarro JJ, Montavez JP, Jerez S, Jimenez-Guerrero P, Lorente-Plazas R, Gonzalez-Rouco JF, Zorita E (2011) A regional simulation over the Iberian Peninsula for the last millenium. Clim Past 7(2):451–472CrossRefGoogle Scholar
  26. Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech Note 398+STR, Natl Cent for Atmos Res, Boulder, COGoogle Scholar
  27. Grubii V, Vellore RK, Huggins AW (2005) Quantitative precipitation forecasting of wintertime storms in the Sierra Nevada: sensitivity to the microphysical parameterization and horizontal resolution. Mon Wea Rev 133(10):2834–2859CrossRefGoogle Scholar
  28. Han Z, Hiromasa U, An J (2008) Evaluation and intercomparison of meteorological predictions by five MM5-PBL parameterizations in combination with three land-surface models. Atmos Environ 42(2):233–249CrossRefGoogle Scholar
  29. Haylock MR, Hofstra N, Tank AMGK, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20,119CrossRefGoogle Scholar
  30. Herrera S, Fita L, Fernandez J, Gutierrez JM (2010) Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain. J Geophys Res 115(D21117):148–227Google Scholar
  31. Hofstra N, Haylock M, New M, Jones P (2009) European high-resolution gridded data set of daily precipitation and surface temperature. J Geophys Res 114:D20,119CrossRefGoogle Scholar
  32. Hong SY, Pan HL (1996) Nonlocal Boundary Layer vertical diffusion in a medium-range forecast model. Mon Wea Rev 124:2322–2339CrossRefGoogle Scholar
  33. Jacob D, Barring L, Christensen OB, Christensen JH, de Castro M, Deque M, Giorgi F, Hagemann S, Lenderink G, Rockel B, Sanchez E, Schaer C, Seneviratne SI, Somot S, van Ulden A, van denHurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52CrossRefGoogle Scholar
  34. Janjic ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Wea Rev 122(5):927–945CrossRefGoogle Scholar
  35. Jerez S, Montavez JP, Gomez-Navarro JJ, Jimenez-Guerrero P, Jimenez J, Gonzalez-Rouco JF (2010) Temperature sensitivity to the land-surface model in MM5 climate simulations over the Iberian Peninsula. Meteorol Zeitschrift 19(4):363–374CrossRefGoogle Scholar
  36. Jerez S, Montavez JP, Gomez-Navarro JJ, Jimenez PA, Jimenez-Guerrero P, Lorente-Plazas R, Gonzalez-Rouco JF (2012) The role of the land-surface model for climate change projections over the Iberian Peninsula. J Geophys Res 117:D01,109CrossRefGoogle Scholar
  37. Jimenez-Guerrero P, Gomez-Navarro JJ, Jerez S, Lorente R, Garcia-Valero JA, Montavez JP (2011) Variation of secondary inorganic aerosols (SIA) in Europe for the 21st century (1991-2100). Atmos Environ 45:1059–1063CrossRefGoogle Scholar
  38. Kain JS (2004) The KainFritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181CrossRefGoogle Scholar
  39. Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining Plume model and its application in convective parameterization. J Atmos Sci 47(23):2784–2802CrossRefGoogle Scholar
  40. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643CrossRefGoogle Scholar
  41. Kerkhoven E, Gan TY, Shiiba M, Reuter G, Tanaka K (2006) A comparison of cumulus parameterization schemes in a numerical weather prediction model for a monsoon rainfall event. Hydrol Process 20:1961–1978CrossRefGoogle Scholar
  42. Koo GS, Boo KO, Kwon WT (2009) Projection of temperature over Korea using an MM5 regional climate simulation. Clim Res 40(2–3):241–248CrossRefGoogle Scholar
  43. Koster RD, Suarez MJ (1995) Relative contributions of land and ocean processes to precipitation variability. J Geophys Res 100:D7CrossRefGoogle Scholar
  44. Kotroni V, Lagouvardos K (2001) Precipitation forecast skill of different convective parameterization and microphysical schemes: application for the cold season over Greece. Geophys Res Lett 28(10):1977–1980CrossRefGoogle Scholar
  45. Leung LR, Gustafson WI (2005) Potential regional climate change and implications to U.S. air quality. Geophys Res Lett 32:L16,711CrossRefGoogle Scholar
  46. Leung LR, Qian Y, Bian X (2003) Hydroclimate of the Western United States based on observations and regional climate simulation of 19812000. Part I: seasonal statistics. J Clim 16(12):1892–1911CrossRefGoogle Scholar
  47. Liang XZ, Li L, Dai A, Kunkel KE (2004) Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys Res Lett 31:L24,208Google Scholar
  48. Liang XZ, Kunkel KE, Meehl GA, Jones RG, Wang JXL (2008) Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections. Geophys Res Lett 35(8):L08,709CrossRefGoogle Scholar
  49. Mapes BE, Warner TT, Xu M, Gochis DJ (2004) Comparison of cumulus parameterizations and entrainment using domain-mean wind divergence in a regional model. J Atmos Sci 61(11):1284–1295CrossRefGoogle Scholar
  50. McFarquhar GM, Zhang H, Heymsfield G, Halverson JB, Hood R, Dudhia J, Marks F (2006) Factors affecting the evolution of hurricane Erin (2001) and the distributions of hydrometeors: role of microphysical processes. J Atmos Sci 63(1):127–150CrossRefGoogle Scholar
  51. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16,663–16,682CrossRefGoogle Scholar
  52. Pan Z, Segal M, Arrit R, Takle E (2004) On the potential change in solar radiation over the US due to increases of atmospheric greenhouse gases. Renow Energy 29:19231928Google Scholar
  53. Pryor S, Barthelmie R, Kjellstrom E (2005) Potential climate change impact on wind energy resources in northern Europe: analyses using a regional climate model. Clim Dyn 25:815–835CrossRefGoogle Scholar
  54. Rakesh V, Singh R, Pal PK, Joshi PC (2007) Sensitivity of mesoscale model forecast during a satellite launch to different cumulus parameterization schemes in MM5. Pure Appl Geophys 164:1617–1637CrossRefGoogle Scholar
  55. Ratnam JV, Kumar KK (2005) Sensitivity of the simulated monsoons of 1987 and 1988 to convective parameterization schemes in MM5. J Clim 18(14):2724–2743CrossRefGoogle Scholar
  56. Reisner J, Rasmussen RM, Bruintjes RT (1998) Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart J R Meteorol Soc 124(548):1071–1107CrossRefGoogle Scholar
  57. Rodrigo FS, Gomez-Navarro JJ, Montavez JP (2012) Climate variability in Andalusia (southern Spain) during the period 1701–1850 based on documentary sources: evaluation and comparison with climate model simulations. Clim Past 8:117–133CrossRefGoogle Scholar
  58. Rummukainen R (2010) State-of-the-art with regional climate models. WIREs Clim Change 1:82–96CrossRefGoogle Scholar
  59. Sanchez-Gomez E, Somot S, Déqué M (2009) Ability of an ensemble of regional climate models to reproduce weather regimes over Europe-Atlantic during the period 1961–2000. Clim Dyn 33(5):723–736CrossRefGoogle Scholar
  60. Soares PMM, Cardoso RM, Miranda PMA, de Medeiros J, Belo-Pereira M, Espirito-Santo F (2012a) WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Clim Dyn. doi: 10.1007/s00382-012-1315-2
  61. Soares PMM, Cardoso RM, Miranda PMA, Viterbo P, Belo-Pereira M (2012b) Assessment of the ENSEMBLES regional climate models in the representation of precipitation variability and extremes over Portugal. J Geophys Res 117(D7):D07,114CrossRefGoogle Scholar
  62. Solman SA, Nunez MN, Cabré MF (2008) Regional climate change experiments over southern South America. I: present climate. Clim Dyn 30(5):533–552CrossRefGoogle Scholar
  63. Stensrud D (2007) Parameterization schemes: keys to understanding numerical weather prediction models. Cambridge University Press, CambridgeGoogle Scholar
  64. van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts. Summary of research and results from the ENSEMBLES projec. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UKGoogle Scholar
  65. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, et al (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  66. Wang W, Seaman NL (1997) A comparison study of convective parameterization schemes in a mesoscale model. Mon Wea Rev 125(2):252–278CrossRefGoogle Scholar
  67. Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30(1):79CrossRefGoogle Scholar
  68. Yang MJ, Tung QC (2003) Evaluation of rainfall forecasts over Taiwan by four cumulus parameterization schemes. J Meteorol Soc Jpn 81(5):1163–1183CrossRefGoogle Scholar
  69. Zhang DL, Zheng WZ (2004) Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. J Appl Meteorol 43(1):157–169CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sonia Jerez
    • 1
    • 2
  • Juan Pedro Montavez
    • 1
  • Pedro Jimenez-Guerrero
    • 1
  • Juan Jose Gomez-Navarro
    • 1
  • Raquel Lorente-Plazas
    • 1
  • Eduardo Zorita
    • 3
  1. 1.Departmento de FisicaUniversidad de MurciaMurciaSpain
  2. 2.IDLUniversidade de LisboaLisbonPortugal
  3. 3.Institute for Coastal ResearchHelmholtz-Zentrum GeesthachtGeesthachtGermany

Personalised recommendations