Climate Dynamics

, Volume 41, Issue 5–6, pp 1439–1452 | Cite as

Importance of oceanic resolution and mean state on the extra-tropical response to El Niño in a matrix of coupled models

  • Andrew Dawson
  • Adrian J. Matthews
  • David P. Stevens
  • Malcolm J. Roberts
  • Pier Luigi Vidale


The extra-tropical response to El Niño in configurations of a coupled model with increased horizontal resolution in the oceanic component is shown to be more realistic than in configurations with a low resolution oceanic component. This general conclusion is independent of the atmospheric resolution. Resolving small-scale processes in the ocean produces a more realistic oceanic mean state, with a reduced cold tongue bias, which in turn allows the atmospheric model component to be forced more realistically. A realistic atmospheric basic state is critical in order to represent Rossby wave propagation in response to El Niño, and hence the extra-tropical response to El Niño. Through the use of high and low resolution configurations of the forced atmospheric-only model component we show that, in isolation, atmospheric resolution does not significantly affect the simulation of the extra-tropical response to El Niño. It is demonstrated, through perturbations to the SST forcing of the atmospheric model component, that biases in the climatological SST field typical of coupled model configurations with low oceanic resolution can account for the erroneous atmospheric basic state seen in these coupled model configurations. These results highlight the importance of resolving small-scale oceanic processes in producing a realistic large-scale mean climate in coupled models, and suggest that it might may be possible to “squeeze out” valuable extra performance from coupled models through increases to oceanic resolution alone.


North Pacific Extra-tropical SST ENSO GCM Basic state 



The models described were developed from the Met Office Hadley Centre Model by the UK High-Resolution Modelling (HiGEM) Project and the UK Japan Climate Collaboration (UJCC). HiGEM is supported by a NERC High Resolution Climate Modelling Grant (R8/H12/123). UJCC was supported by the Foreign and Commonwealth Office Global Opportunities Fund, and jointly funded by NERC and the DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). Some model integrations were performed using the Japanese Earth Simulator supercomputer, supported by JAMSTEC. NCEP/NCAR reanalysis data were provided by the NOAA/OAR/ERSL PSD, Boulder Colorado, USA, from their web site at The UKMO HadISST data were provided by the British Atmospheric Data Centre, from their website at AD was supported by a NERC PhD studentship. We thank two anonymous reviewers whose comments helped to improve the manuscript.


  1. AchutaRao K, Sperber K (2002) Simulation of the El Niño Southern oscillation: results from the coupled model intercomparison project. Clim Dyn 19(3):191–209. doi: 10.1007/s00382-001-0221-9 Google Scholar
  2. Alexander MA, Bladé I, Newman M, Lanzante JR, Lau N-C, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15(16):2205–2231. doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2 CrossRefGoogle Scholar
  3. Brayshaw D, Hoskins B, Blackburn M (2008) The storm-track response to idealized SST perturbations in an aquaplanet GCM. J Atmos Sci 65(9):2842–2860. doi: 10.1175/2008JAS2657.1 CrossRefGoogle Scholar
  4. Brayshaw DJ, Hoskins B, Blackburn M (2011) The basic ingredients of the North Atlantic storm track. Part II: sea surface temperatures. J Atmos Sci 68(8):1784–1805. doi: 10.1175/2011JAS3674.1 CrossRefGoogle Scholar
  5. Dawson A, Matthews AJ, Stevens DP (2011) Rossby wave dynamics of the extra-tropical response to El Niño: importance of the basic state in coupled GCMs. Clim Dyn 37(1):391–405. doi: 10.1007/s00382-010-0854-7 CrossRefGoogle Scholar
  6. Deser C, Blackmon ML (1995) On the relationship between tropical and North Pacific sea surface temperature variations. J Clim 8(6):1677–1680. doi: 10.1175/1520-0442(1995)008<1677:OTRBTA>2.0.CO;2 CrossRefGoogle Scholar
  7. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16(2):147–168. doi: 10.1007/s003820050010 CrossRefGoogle Scholar
  8. Graham NE, Barnett TP, Wilde R, Ponater M, Schubert S (1994) On the roles of tropical and midlatitude SSTs in forcing interannual to interdecadal variability in the winter Northern Hemisphere circulation. J Clim 7(9):1416–1441. doi: 10.1175/1520-0442(1994)007<1416:OTROTA>2.0.CO;2 CrossRefGoogle Scholar
  9. Guilyardi E, Gualdi S, Slingo J, Navarra A, Delecluse , J Cole, G Madec, Roberts M, Latif M, Terray L (2004) Representing El Niño in coupled ocean–atmosphere GCMs: the dominant role of the atmospheric component. J Clim 17(24):4623–4629. doi: 10.1175/JCLI-3260.1 CrossRefGoogle Scholar
  10. Hoskins BJ, Ambrizzi T (1993) Rossby wave propagation on a realistic longitudinally varying flow. J Atmos Sci 50(12):1661–1671. doi: 10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2 CrossRefGoogle Scholar
  11. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38(6):1179–1196. doi: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2 CrossRefGoogle Scholar
  12. Inatsu M, Mukougawa H, Xie S (2002) Tropical and extratropical SST effects on the midlatitude storm track. J Meteorol Soc Jpn 80(4B):1069–1076. doi: 10.2151/jmsj.80.1069 CrossRefGoogle Scholar
  13. Johns TC, Durman CF, Banks HT, Roberts MJ, McLaren AJ, Ridley JK, Senior CA, Williams KD, Jones A, Rickard GJ, Cusack S, Ingram WJ, Crucifix M, Sexton DMH, Joshi MM, Dong B-W, Spencer H, Hill RSR, Gregory JM, Keen AB, Pardaens AK, Lowe JA, Bodas-Salcedo A, Stark S, Searl Y (2006) The new Hadley Centre climate model (HadGEM1): evaluation of coupled simulations. J Clim 19(7):1327–1353. doi: 10.1175/JCLI3712.1 CrossRefGoogle Scholar
  14. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woolen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuazaki W, Higgins W, Jonowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  15. Karoly D (1983) Rossby wave propagation in a barotropic atmosphere. Dynam Atmos Oceans 7(2):111–125. doi: 10.1016/0377-0265(83)90013-1 CrossRefGoogle Scholar
  16. Kiladis GN, Weickmann KM (1992) Circulation anomalies associated with tropical convection during northern winter. Mon Weather Rev 120(9):1900–1923. doi: 10.1175/1520-0493(1992)120<1900:CAAWTC>2.0.CO;2 CrossRefGoogle Scholar
  17. Lau N-C, Nath MJ (1994) A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere–ocean system. J Clim 7(8):1184–1207. doi: 10.1175/1520-0442(1994)007<1184:AMSOTR>2.0.CO;2 CrossRefGoogle Scholar
  18. Mechoso CR, Robertson AW, Barth N, Davey MK, Delecluse P, Gent PR, Ineson S, Kirtman B, Latif M, Treut HL, Nagai T, Neelin JD, Philander SGH, Polcher J, Schopf PS, Stockdale T, Suarez MJ, Terray L, Thual O, Tribbia JJ (1995) The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon Weather Rev 123(9):2825–2838. doi: 10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2 CrossRefGoogle Scholar
  19. Navarra A, Gualdi SMS, Behera S, Luo J-J, Masson S, Guilyardi E, Delecluse P, Yamagata T (2008) Atmospheric horizontal resolution affects tropical climate variability in coupled models. J Clim 21(4):730–750. doi: 10.1175/2007JCLI1406.1 CrossRefGoogle Scholar
  20. Norris JR (2000) Interannual and interdecadal variability in the storm track, cloudiness, and sea surface temperature over the summertime North Pacific. J Clim 13(2):422–430. doi: 10.1175/1520-0442(2000)013<0422:IAIVIT>2.0.CO;2 CrossRefGoogle Scholar
  21. Philander SG (1990) El Niño La Niña and the southern oscillation, 1st edn. Academic Press, London, p 287Google Scholar
  22. Philander SGH, Hurlin WJ, Pacanowski RC (1986) Properties of long equatorial waves in models of the seasonal cycle in the tropical Atlantic and Pacific oceans. J Geophys Res 91(C12):14207–14211. doi: 10.1029/JC091iC12p14207 CrossRefGoogle Scholar
  23. Pope V, Stratton R (2002) The processes governing horizontal resolution sensitivity in a climate model. Clim Dyn 19(3):211–236. doi: 10.1007/s00382-001-0222-8 Google Scholar
  24. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate Models and Their Evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  25. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  26. Roberts MJ, Banks H, Gedney N, Gregory J, Hill R, Mullerworth S, Pardaens A, Rickard G, Thorpe R, Wood R (2004) Impact of an eddy-permitting ocean resolution on control and climate change simulations with a global coupled GCM. J Clim 17(1):3–20. doi: 10.1175/1520-0442(2004)017<0003:IOAEOR>2.0.CO;2 CrossRefGoogle Scholar
  27. Roberts MJ, Clayton A, Demory M-E, Donners J, Vidale PL, Norton W, Shaffrey L, Stevens DP, Stevens I, Wood RA, Slingo J (2009) Impact of resolution on the tropical Pacific circulation in a matrix of coupled models. J Clim 22(10):2541–2556. doi: 10.1175/2008JCLI2537.1 CrossRefGoogle Scholar
  28. Shaffrey LC, Stevens I, Norton WA, Roberts MJ, Vidale PL, Harle JD, Jrrar A, Stevens DP, Woodage MJ, Demory M-E, Donners J, C D B, Clayton A, Cole JW, Wilson SS, Connolley WM, Davies TM, Iwi AM, Johns TC, King JC, New AL, Slingo JM, Slingo A, Steenman-Clark L, Martin GM (2009) UK-HiGEM: the new UK high resolution global environment model. Model description and basic evaluation. J Clim 22(8):1861–1896. doi: 10.1175/2008JCLI2508.1 CrossRefGoogle Scholar
  29. Wilks DS (2006) Statistical analysis in the atmospheric sciences, 2nd edn. Academic Press, London, p 627Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Andrew Dawson
    • 1
    • 5
  • Adrian J. Matthews
    • 1
    • 2
  • David P. Stevens
    • 1
  • Malcolm J. Roberts
    • 3
  • Pier Luigi Vidale
    • 4
  1. 1.School of MathematicsUniversity of East AngliaNorwichUK
  2. 2.School of Environmental SciencesUniversity of East AngliaNorwichUK
  3. 3.Met Office Hadley CentreExeterUK
  4. 4.Department of Meteorology, National Centre for Atmospheric ScienceUniversity of ReadingReadingUK
  5. 5.Atmospheric, Oceanic and Planetary Physics, Department of PhysicsUniversity of OxfordOxfordUK

Personalised recommendations