Climate Dynamics

, Volume 40, Issue 9–10, pp 2381–2399 | Cite as

Initialisation and predictability of the AMOC over the last 50 years in a climate model

  • Didier Swingedouw
  • Juliette Mignot
  • Sonia Labetoulle
  • Eric Guilyardi
  • Gurvan Madec
Article

Abstract

The mechanisms involved in Atlantic meridional overturning circulation (AMOC) decadal variability and predictability over the last 50 years are analysed in the IPSL–CM5A–LR model using historical and initialised simulations. The initialisation procedure only uses nudging towards sea surface temperature anomalies with a physically based restoring coefficient. When compared to two independent AMOC reconstructions, both the historical and nudged ensemble simulations exhibit skill at reproducing AMOC variations from 1977 onwards, and in particular two maxima occurring respectively around 1978 and 1997. We argue that one source of skill is related to the large Mount Agung volcanic eruption starting in 1963, which reset an internal 20-year variability cycle in the North Atlantic in the model. This cycle involves the East Greenland Current intensity, and advection of active tracers along the subpolar gyre, which leads to an AMOC maximum around 15 years after the Mount Agung eruption. The 1997 maximum occurs approximately 20 years after the former one. The nudged simulations better reproduce this second maximum than the historical simulations. This is due to the initialisation of a cooling of the convection sites in the 1980s under the effect of a persistent North Atlantic oscillation (NAO) positive phase, a feature not captured in the historical simulations. Hence we argue that the 20-year cycle excited by the 1963 Mount Agung eruption together with the NAO forcing both contributed to the 1990s AMOC maximum. These results support the existence of a 20-year cycle in the North Atlantic in the observations. Hindcasts following the CMIP5 protocol are launched from a nudged simulation every 5 years for the 1960–2005 period. They exhibit significant correlation skill score as compared to an independent reconstruction of the AMOC from 4-year lead-time average. This encouraging result is accompanied by increased correlation skills in reproducing the observed 2-m air temperature in the bordering regions of the North Atlantic as compared to non-initialized simulations. To a lesser extent, predicted precipitation tends to correlate with the nudged simulation in the tropical Atlantic. We argue that this skill is due to the initialisation and predictability of the AMOC in the present prediction system. The mechanisms evidenced here support the idea of volcanic eruptions as a pacemaker for internal variability of the AMOC. Together with the existence of a 20-year cycle in the North Atlantic they propose a novel and complementary explanation for the AMOC variations over the last 50 years.

Keywords

Decadal climate prediction Ocean dynamics Atlantic meridional overturning circulation Hindcast Predictability Volcanic eruptions Mount Agung North Atlantic oscillation 

References

  1. Álvarez-Garcia F, Latif M, Biastoch A (2008) On multidecadal and quasi-decadal North Atlantic variability. J Clim 21:3433–3452. doi:10.1175/2007JCLI1800.1 CrossRefGoogle Scholar
  2. Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Glob Biogeochem Cycles 20(2):GB2017. doi:10.1029/2005GB002591 Google Scholar
  3. Belkin IM (2004) Propagation of the “Great Salinity Anomaly” of the 1990s around the northern North Atlantic. Geophys Res Lett 31:L08306, 4 pp. doi:10.1029/2003GL019334
  4. Belkin IM, Levitus S, Antonov J, Malmberg S-A (1998) Great salinity anomalies in the North Atlantic. Prog Oceanogr 41:1–68CrossRefGoogle Scholar
  5. Boer GJ (2004) Long-timescale potential predictability in an ensemble of coupled climate models. Clim Dyn 23:29–44Google Scholar
  6. Booth PW, Matthews SW, Sisson RE (1963) Bali’s sacred mountain blows its top. Natl Geogr 124(10):436Google Scholar
  7. Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560CrossRefGoogle Scholar
  8. Chylek P, Folland CK, Dijkstra KA, Lesins G, Dubey MK (2011) Ice-core data evidence for a prominent near 20 year time-scale of the Atlantic multidecadal oscillation. Geophys Res Lett 38:L13704, 5 pp. doi:10.1029/2011GL047501
  9. Collins M et al (2006) Interannual to decadal climate predictability in the North Atlantic: a multimodel-ensemble study. J Clim 19:1195–1203CrossRefGoogle Scholar
  10. Cunningham SA et al (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 17:935–938CrossRefGoogle Scholar
  11. Czaja A, Marshall J (2001) Observations of atmosphere–ocean coupling in the North Atlantic. Q J R Meteorol Soc 127:1893–1916CrossRefGoogle Scholar
  12. Delworth TL, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13:1481–1495CrossRefGoogle Scholar
  13. Delworth TL, Manabe S, Stouffer R (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J Clim 6:1993–2011CrossRefGoogle Scholar
  14. Deser C, Blackmon ML (1993) Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J Clim 6:1743–1753CrossRefGoogle Scholar
  15. Dijkstra HA, Ghil M (2005) Low-frequency variability of the ocean circulation: a dynamical systems approach. Rev Geophys 43:RG3002. doi:10.1029/2002RG000122 Google Scholar
  16. Dunstone NJ, Smith DM (2010) Impact of atmosphere and sub-surface ocean data on decadal climate prediction. Geophys Res Lett 37:L02709. doi:10.1029/2009GL041609 Google Scholar
  17. Dufresne J-L, Foujols M-A, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel J-P, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix J-Y, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre M-P, Lefevre F, Levy C, Li Z. X., Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim Dyn (submitted)Google Scholar
  18. Eden C, Jung T (2001) North Atlantic interdecadal variability: oceanic response to the North Atlantic oscillation (1865–1997). J Clim 14:676–691CrossRefGoogle Scholar
  19. Escudier R, Mignot J, Swingedouw D A 20-year coupled ocean–sea ice–atmosphere variability mode in the North Atlantic in an AOGCM. Clim Dyn (submitted)Google Scholar
  20. Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:2609–2612Google Scholar
  21. Frankcombe L, von der Heydt A, Dijsktra HA (2010) North atlantic multidecadal climate variability: an investigation of dominant time scales and processes. J Clim 23:3626–3638CrossRefGoogle Scholar
  22. Frankignoul C, Kestenare E (2002) The surface heat flux feedback. Part 1: estimates from observations in the Atlantic and the North Pacific. Clim Dyn 19:633–647CrossRefGoogle Scholar
  23. Haak H, Jungclaus J, Mikolajewicz U, Latif M (2003) Formation and propagation of great salinity anomalies. Geophys Res Lett 30(9):1473. doi:10.1029/2003GL017065 CrossRefGoogle Scholar
  24. Häkkinen S (1999) A simulation of thermohaline effects of a great salinity anomaly. J Clim 12:1781–1795CrossRefGoogle Scholar
  25. Haney RH (1971) Surface thermal boundary conditions for ocean circulation models. J Phys Oceanogr 1:241–248CrossRefGoogle Scholar
  26. Hourdin F et al (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrised physics with emphasis on tropical convection. Clim Dyn 27:787–813CrossRefGoogle Scholar
  27. Huck T, Colin de Verdière A, Estrade P, Schopp R (2008) Low-frequency variations of the large-scale ocean circulation and heat transport in the North Atlantic from 1955–1998 in situ temperature and salinity data. Geophys Res Lett 35:L23613. doi:10.1029/2008GL035635 CrossRefGoogle Scholar
  28. Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipation. Science 269:676–679CrossRefGoogle Scholar
  29. Iwi AM, Hermanson L, Haines K, Sutton RT (2012) Mechanisms linking volcanic aerosols to the Atlantic meridional overturning circulation. J Clim 25:3039–3051CrossRefGoogle Scholar
  30. Kanzow T, Cunningham SA, Johns WE, Hirschi JJ-M, Marotzke J, Baringer MO, Meinen CS, Chidichimo MP, Atkinson C, Beal LM, Bryden HL, Collins J (2010) Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N. J Clim 23:5678–5698. doi:10.1175/2010JCLI3389.1 Google Scholar
  31. Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal scale climate prediction in the North Atlantic sector. Nature 453:84CrossRefGoogle Scholar
  32. Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–268CrossRefGoogle Scholar
  33. Knight J, Allan R, Folland C, Vellinga M, Mann M (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233 CrossRefGoogle Scholar
  34. Köhl A, Stammer D (2008) Variability of the meridional overturning in the North Atlantic from the 50-year GECCO state estimation. J Phys Oceanogr 38(9):1913–1930. doi:10.1175/2008JPO3775.1 CrossRefGoogle Scholar
  35. Latif M, Roeckner E, Botzet M, Esch M, Haak H, Hagemann S, Jungclaus J, Legutke S, Marsland S, Mikolajewicz U, Mitchell J (2004) Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J Clim 17(7):1605–1614CrossRefGoogle Scholar
  36. Latif M, Collins M, Pohlmann H, Keenlyside N (2006) A review of predictability studies of the Atlantic sector climate on decadal time scales. J Clim 19:5971–5987CrossRefGoogle Scholar
  37. Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36:L07608. doi:10.1029/2008GL037155 Google Scholar
  38. Lherminier P, Mercier H, Huck T, Gourcuff C, Perez FF, Morin P, Kermabon C (2010) The meridional overturning circulation and the subpolar gyre observed at the A025-OVIDE section in June 2002 and 2004. Deep-Sea Res I 57:1374–1391. doi:10.1016/j.dsr.2010.07.009 CrossRefGoogle Scholar
  39. Luo JJ, Masson S, Behera S, Shingu S, Yamagata T (2005) Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J Clim 18:4474–4497CrossRefGoogle Scholar
  40. Madec G (2008) NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, no. 27, ISSN no: 1288-1619Google Scholar
  41. Madec G, Delecluse P (1997) The OPA/ARPEGE and OPA/LMD global ocean–atmosphere coupled model. Int WOCE Newslett 26Google Scholar
  42. Mignot J, Frankignoul C (2005) The variability of the Atlantic meridional overturning circulation, the North Atlantic oscillation, and the El Nino Southern oscillation in the Bergen climate model. J Clim 18(13):2361–2375. doi:10.1175/JCLI3405.1 CrossRefGoogle Scholar
  43. Mignot J, Khodri M, Frankignoul C, Servonnat J (2011) Volcanic impact on the Atlantic ocean over the last millennium. Clim Past 7:1439–1455. doi:10.1007/s00382-012-1466-1 Google Scholar
  44. Msadek R, Frankignoul C (2009) Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Clim Dyn 33:45–62. doi:10.1007/s00382-008-0452-0 CrossRefGoogle Scholar
  45. Msadek R, Dixon K, Delworth T, Hurling W (2010) Assessing the predictability of the Atlantic meridional overturning and associated fingerprints. Geophys Res Lett 37:L19608. doi:10.1029/2010GL044517 Google Scholar
  46. Otterå OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3:688–694. doi:10.1038/ngeo955 CrossRefGoogle Scholar
  47. Pohlmann H et al (2004) Estimating the decadal predictability of a coupled AOGCM. J Clim 17:4463–4472CrossRefGoogle Scholar
  48. Pohlmann H, Jungclaus J, Köhl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: effects on the North Atlantic. J Clim 22:3926–3938CrossRefGoogle Scholar
  49. Persechino A, Mignot J, Swingedouw D, Labetoule S, Guilyardi E Decadal predictability of the Atlantic meridional overturning circulation and climate in the IPSL-CM5A model. Clim Dyn (submitted)Google Scholar
  50. Peterson LC, Haug GH, Hughen KA, Rohl U (2000) Rapid changes in the hydrologic cycle of the tropical North Atlantic during the last glacial. Science 290:1947–1951Google Scholar
  51. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670 CrossRefGoogle Scholar
  52. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J Clim 20:5473–5496CrossRefGoogle Scholar
  53. Sicre M-A, Jacob J, Ezat U, Rousse S, Kissel C, Yiou P, Eiríksson J, Knudsen KL, Jansen E, Turon J-L (2008) Decadal variability of sea surface temperatures off North Iceland over the last 2000 years. Earth Planet Sci Lett 268:137–142CrossRefGoogle Scholar
  54. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296. doi:10.1175/2007JCLI2100.1. http://dx.doi.org/ Google Scholar
  55. Stenchikov G, Delworth TL, Ramswamy V, Stouffer RJ, Wittenberg A, Zeng F (2009) Volcanic signals in oceans. J Geophys Res 114:D16104. doi:10.1029/2008JD011673 CrossRefGoogle Scholar
  56. Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M , Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387Google Scholar
  57. Sundby S, Drinkwater K (2007) On the mechanisms behind salinity anomaly signals of the northern North Atlantic. Prog Oceanogr 73:190–202CrossRefGoogle Scholar
  58. Swingedouw D, Mignot J, Braconnot P, Mosquet E, Kageyama M, Alkama R (2009) Impact of fresh water release in the North Atlantic under different climate conditions in an OAGCM. J Clim 22:6377-6403Google Scholar
  59. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  60. Timmermann A, Latif M, Voss R, Grotzner A (1998) North Atlantic interdecadal variability: a coupled air–sea mode. J Clim 11:1906–1932CrossRefGoogle Scholar
  61. Timmermann R, Goosse H, Madec G, Fichefet T, Ethe C, Duliere V (2005) On the representation of high latitude processes in the ORCA–LIM global coupled sea ice–ocean model. Ocean Model 8(1–2):175. doi:10.1016/j.ocemod.2003.12.009 CrossRefGoogle Scholar
  62. Tulloch R, J Marshall (2012) Exploring mechanisms of variability and predictability of Atlantic meridional overturning circulation in two coupled climate models. J Clim 25:4067–4080. doi:10.1175/JCLI-D-11-00460.1 Google Scholar
  63. van Oldenborgh GJ, Doblas-Reyes FJ, Wouters B, Hazeleger W (2012) Skill in the trend and internal variability in a multi-model decadal prediction ensemble. Clim Dyn 38(7):1263–1280. doi:10.1007/s00382-012-1313-4 CrossRefGoogle Scholar
  64. Zanchettin D, Timmreck C, Graf H-F, Rubino A, Lorenz S, Lohmann K, Krueger K, Jungclaus JH (2012) Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Clim Dyn 39(1–2):419–444. doi:10.1007/s00382-011-1167-1 CrossRefGoogle Scholar
  65. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi:10.1029/2006GL026267 CrossRefGoogle Scholar
  66. Zhang S, Rosati A, Harrison MJ (2009) Detection of multi-decadal oceanic variability by ocean data assimilation in the context of a “perfect” coupled model. J Geophys Res 14:C12018. doi:10.1029/2008JC005261 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Didier Swingedouw
    • 1
  • Juliette Mignot
    • 2
  • Sonia Labetoulle
    • 2
  • Eric Guilyardi
    • 2
    • 3
  • Gurvan Madec
    • 2
    • 4
  1. 1.LSCE/IPSLGif-sur-YvetteFrance
  2. 2.LOCEAN/IPSLParisFrance
  3. 3.NCAS-ClimateUniversity of ReadingReadingUK
  4. 4.NOCSSouthamptonUK

Personalised recommendations