Advertisement

Climate Dynamics

, Volume 39, Issue 11, pp 2713–2731 | Cite as

The representation of tropical upper tropospheric water in EC Earth V2

  • M. S. JohnstonEmail author
  • P. Eriksson
  • S. Eliasson
  • C. G. Jones
  • R. M. Forbes
  • D. P. Murtagh
Article

Abstract

Tropical upper tropospheric humidity, clouds, and ice water content, as well as outgoing longwave radiation (OLR), are evaluated in the climate model EC Earth with the aid of satellite retrievals. The Atmospheric Infrared Sounder and Microwave Limb Sounder together provide good coverage of relative humidity. EC Earth’s relative humidity is in fair agreement with these observations. CloudSat and CALIPSO data are combined to provide cloud fractions estimates throughout the altitude region considered (500–100 hPa). EC Earth is found to overestimate the degree of cloud cover above 200 hPa and underestimate it below. Precipitating and non-precipitating EC Earth ice definitions are combined to form a complete ice water content. EC Earth’s ice water content is below the uncertainty range of CloudSat above 250 hPa, but can be twice as high as CloudSat’s estimate in the melting layer. CERES data show that the model underestimates the impact of clouds on OLR, on average with about 9 W m−2. Regionally, EC Earth’s outgoing longwave radiation can be ∼20 W m−2 higher than the observation. A comparison to ERA-Interim provides further perspectives on the model’s performance. Limitations of the satellite observations are emphasised and their uncertainties are, throughout, considered in the analysis. Evaluating multiple model variables in parallel is a more ambitious approach than is customary.

Keywords

Humidity Clouds IWC Tropics Climate Satellite 

Notes

Acknowledgments

The authors would like to thank Klaus Wyser (SMHI), Simona Ştefănescu (ECMWF) for their aid in setting up and running the model. Special thanks to George E. Ferriter for his linguistic critique of the article. The CERES data are obtained from the NASA Langley Research Centre EOSDIS Distributed Archive Center. Discussions with Norman Loeb and Dave Doelling were beneficial. We would like to thank the following organisations for their open access to the data used in this study: GSFC Earth Science Data and Information Services Center (GES DISC), the Jet Propulsion Laboratory, CloudSat Data Processing Center, and ISCCP, and IPSL/LMD for CALIPSO-GOCCP dataset available at http://climserv.ipsl.polytechnique.fr/cfmip-obs

References

  1. Austin RT, Heymsfield AJ, Stephens GL (2009) Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J Geophys Res 114(D8):D00A23. doi: 10.1029/2008JD010049
  2. Bechtold P, Köhler M, Jung T, Doblas-Reyes F, Leutbecher M, Rodwell MJ, Vitart F, Balsamo G (2008) Advances in simulating atmospheric variability with the ECMWF model: from synoptic to decadal time-scales. Q J R Meteorol Soc 134(634): 1337–1351. doi: 10.1002/qj.289 CrossRefGoogle Scholar
  3. Buehler SA, von Engeln A, Brocard E, John VO, Kuhn T, Eriksson P (2006) Recent developments in the line-by-line modeling of outgoing longwave radiation. J Quant Spectrosc Radiat Transf 98(3): 446–457. doi: 10.1016/j.jqsrt.2005.11.001 CrossRefGoogle Scholar
  4. Chen WT, Woods CP, Li JLF, Waliser DE, Chern JD, Tao WK, Jiang JH, Tompkins AM (2011) Partitioning cloudsat ice water content for comparison with upper-tropospheric ice in global atmospheric models. J Geophys Res. doi: 10.1029/2010JD015179
  5. Chepfer H, Bony S, Winker D, Chiriaco M, Dufresne J, Sèze G (2008) Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys Res Lett 35(15):L15,704. doi:  10.1029/2008GL034207
  6. Chepfer H, Bony S, Winker D, Cesana G, Dufresne JL, Minnis P, Stubenrauch CJ, Zeng S (2010) The GCM oriented calipso cloud product CALIPSO-GOCCP. J Geophys Res 115:D00H16. doi:  10.1029/2009JD012251
  7. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  8. Delanoë J, Hogan RJ (2010) Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds. J Geophys Res 115(D00H29):2064–2078. doi: 10.1029/2009JD012346 Google Scholar
  9. Ebert EE, Curry JA (1992) A parameterization of ice cloud optical properties for climate models. J Geophys Res 97(D4):3831–3836. doi: 10.1029/91JD02472 CrossRefGoogle Scholar
  10. Ekström M, Eriksson P, Read WG, Milz M, Murtagh DP (2008) Comparison of satellite limb-sounding humidity climatologies of the uppermost tropical troposphere. Atmos Chem Phys 8(2):309–320. doi: 10.5194/acp-8-309-2008 CrossRefGoogle Scholar
  11. Eliasson S, Buehler SA, Milz M, Eriksson P, John VO (2011) Assessing observed and modelled spatial distributions of ice water path using satellite data. Atmos Chem Phys 11(1):375–391. doi: 10.5194/acp-11-375-2011 CrossRefGoogle Scholar
  12. Eriksson P, Ekström M, Rydberg B, Wu DL, Austin RT, Murtagh DP (2008) Comparison between early Odin-SMR, Aura MLS and CloudSat retrievals of cloud ice mass in the upper tropical troposphere. Atmos Chem Phys 8(7):1937–1948. doi:  10.5194/acp-8-1937-2008 CrossRefGoogle Scholar
  13. Eriksson P, Rydberg B, Johnston M, Murtagh DP, Struthers H, Ferrachat S, Lohmann U (2010) Diurnal variations of humidity and ice water content in the tropical upper troposphere. Atmos Chem Phys 10:11519–11533. doi: 10.5194/acp-10-11519-2010 Google Scholar
  14. Evan AT, Heidinger AK, Vimont DJ (2007) Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys Res Lett 34(4):L04,701. doi: 10.1029/2006GL028083
  15. Folkins I, Kelly KK, Weinstock EM (2002) A simple explanation for the increase in relative humidity between 11 and 14 km in the tropics. J Geophys Res 107(D23):4736. doi: 10.1029/2002JD002185 CrossRefGoogle Scholar
  16. Geleyn J, Hollingsworth A (1979) An economical analytical method for the computation of the interaction between scattering and line absorption of radiation. Beitr Phys Atm 52:1–16Google Scholar
  17. Gettelman A, Collins WD, Fetzer EJ, Eldering A, Irion FW, Duffy PB, Bala G (2006) Climatology of upper-tropospheric relative humidity from the Atmospheric Infrared Sounder and implications for climate. J Clim 19(23):6104–6121. doi: 10.1175/JCLI3956.1 CrossRefGoogle Scholar
  18. Hazeleger W, Severijns C, Semmler T, Stefãnescu S, Yang S, Wang X, Wyser K, Dutra E, Baldasano JM, Bintanja R et al (2010) EC-Earth: a seamless earth system prediction approach in action. Bull Am Meteorol Soc 91(10):1357–1363. doi:  10.1175/2010BAMS2877.1 CrossRefGoogle Scholar
  19. Hazeleger W, Wang X, Severijns C, Stefãnescu S, Bintanja R, Sterl A, Wyser K, Semmler T, Yang S, van den Hurk B, van Noije T, van der Linden E, van der Wiel K (2011) EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim Dyn 1–19. doi: 10.1007/s00382-011-1228-5
  20. Heymsfield AJ, Iaquinta J (2000) Cirrus crystal terminal velocities. J Atmos Sci 57(7):916–938. doi: 10.1175/1520-0469(2000)057<0916:CCTV>2.0.CO;2 CrossRefGoogle Scholar
  21. Heymsfield AJ, Matrosov S, Baum B (2003) Ice water path-optical depth relationships for cirrus and deep stratiform ice cloud layers. J Appl Meteorol 42(10):1369–1390. doi: 10.1175/1520-0450(2003)042<1369:IWPDRF>2.0.CO;2 CrossRefGoogle Scholar
  22. Kärcher B, Lohmann U (2002) A parameterization of cirrus cloud formation: homogeneous freezing including effects of aerosol size. J Geophys Res 107(D23):4698. doi: 10.1029/2001JD001429 Google Scholar
  23. Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulations. Meteorol Monogr 10(32)Google Scholar
  24. Liang C, Eldering A, Gettelman A, Tian B, Wong S, Fetzer E, Liou K (2011) Record of tropical interannual variability of temperature and water vapor from a combined AIRS-MLS data set. J Geophys Res 116:D06,103. doi: 10.1029/2010JD014841
  25. Liu JY, Orville HD (1969) Numerical modeling of precipitation and cloud shadow effects on mountain-induced cumuli. J Atmos Sci 26(6):1283–1298. doi: 10.1175/1520-0469(1969)026<1283:NMOPAC>2.0.CO;2 CrossRefGoogle Scholar
  26. Liu C, Zipser EJ (2009) Implications of the day versus night differences of water vapor, carbon monoxide, and thin cloud observations near the tropical tropopause. J Geophys Res 114:D09303. doi: 10.1029/2008JD011524
  27. Liu C, Zipser EJ, Mace GG, Benson S (2008) Implications of the differences between daytime and nighttime CloudSat observations over the Tropics. J Geophys Res 113:D00A04. doi: 10.1029/2008JD009783
  28. Loeb NG, Kato S (2002) Top-of-atmosphere direct radiative effect of aerosols over the tropical oceans from the Clouds and the Earth’s Radiant Energy System CERES satellite instrument. J Clim 15(12):1474–1484. doi: 10.1175/1520-0442(2002)015<1474:TOADRE>2.0.CO;2 CrossRefGoogle Scholar
  29. Loeb NG, Wielicki BA, Doelling DR, Smith GL, Keyes DF, Kato S, Manalo-Smith N, Wong T (2009) Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J Clim 22(3):748–766. doi: 10.1175/2008JCLI2637.1 CrossRefGoogle Scholar
  30. Maddy ES, Barnet CD (2008) Vertical resolution estimates in version 5 of AIRS operational retrievals. IEEE Trans Geosci Remote Sensing 46(8):2375–2384. doi: 10.1109/TGRS.2008.917498 CrossRefGoogle Scholar
  31. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Cilmate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  32. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16663–16682. doi: 10.1029/97JD00237 Google Scholar
  33. Murphy DM, Koop T (2005) Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q J R Meteorol Soc 131(608):1539–1565. doi: 10.1256/qj.04.94 CrossRefGoogle Scholar
  34. Nazaryan H, McCormick MP, Menzel WP (2008) Global characterization of cirrus clouds using CALIPSO data. J Geophys Res 113(D16):D16,211. doi: 10.1029/2007JD009481
  35. Palmer TN, Doblas-Reyes FJ, Weisheimer A, Rodwell MJ (2009) Toward seamless prediction: calibration of climate change projections using seasonal forecasts reply. Bull Am Meteorol Soc 90(10):1551–1554. doi: 10.1175/2009BAMS2916.1 CrossRefGoogle Scholar
  36. Protat A, Delanoë J, O’Connor EJ, L’Ecuyer TS (2010) The evaluation of CloudSat and CALIPSO ice microphysical products using ground-based cloud radar and lidar observations. J Atmos Ocean Technol 27(5):793–810. doi: 10.1175/2009JTECHA1397.1 CrossRefGoogle Scholar
  37. Räisänen P (1998) Effective longwave cloud fraction and maximum-random overlap of clouds: a problem and a solution. MWR 126(12):3336–3340. doi: 10.1175/1520-0493(1998)126<3336:ELCFAM>2.0.CO;2 CrossRefGoogle Scholar
  38. Read WG, Lambert A, Bacmeister J, Cofield RE, Christensen LE, Cuddy DT, Daffer WH, Drouin BJ, Fetzer E, Froidevaux L, Fuller R, Herman R, Jarnot RF, Jiang JH, Jiang YB, Kelly K, Knosp BW, Kovalenko LJ, Livesey NJ, Liu HC, Manney GL, Pickett HM, Pumphrey HC, Rosenlof KH, Sabounchi X, Santee ML, Schwartz MJ, Snyder WV, Stek PC, Su H, Takacs LL, Thurstans RP, Vömel H, Wagner PA, Waters JW, Webster CR, Weinstock EM, Wu DL (2007) Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation. J Geophys Res 112:D24S35. doi: 10.1029/2007JD008752 CrossRefGoogle Scholar
  39. Rossow WB, Garder L (1984) Selection of map grid for data analysis and archival. J Clim Appl Meteorol 23(8):1253–1257. doi: 10.1175/1520-0450(1984)023<1253:SOAMGF>2.0.CO;2 CrossRefGoogle Scholar
  40. Rossow WB, Schiffer RA (1991) ISCCP cloud data products. Bull Am Meteorol Soc 72(1):2–20. doi: 10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2 CrossRefGoogle Scholar
  41. Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80(11):2261–2287. doi: 10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2 CrossRefGoogle Scholar
  42. Soden BJ (2000) The diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere. Geophys Res Lett 27(15):2173–2176. doi: 10.1029/2000GL011436 CrossRefGoogle Scholar
  43. Sohn BJ, Nakajima T, Satoh M, Jang HS (2010) Impact of different definitions of clear-sky flux on the determination of longwave cloud radiative forcing: Nicam simulation results. Atmos Chem Phys 10(23):11641–11646. doi: 10.5194/acp-10-11641-2010 Google Scholar
  44. Stephens GL, Vane DG, Boain RJ, Mace GG, Sassen K, Wang Z, Illingworth AJ, O’connor EJ, Rossow WB, Durden SL et al (2002) The CloudSat Science Team, 2002: the CloudSat mission and the A-train. Bull Am Meteorol Soc 83(12):1771–1790. doi:  10.1175/BAMS-83-12-1771 CrossRefGoogle Scholar
  45. Sun W, Videen G, Kato S, Lin B, Lukashin C, Hu Y (2011) A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data. J Geophys Res 116:D22207. doi: 10.1029/2011JD016422
  46. Tian B, Soden BJ, Wu X (2004) Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model. J Geophys Res 109:D10101. doi: 10.1029/2003JD004117
  47. Tiedtke M (1993) Representation of clouds in large-scale models. Mon Weather Rev 121(11):3040–3061. doi: 10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2 CrossRefGoogle Scholar
  48. Tompkins AM, Gierens K, Rädel G (2007) Ice supersaturation in the ECMWF integrated forecast system. Q J R Meteorol Soc 133:53–63. doi: 10.1002/qj.14 CrossRefGoogle Scholar
  49. Waliser DE, Li JLF, Woods CP, Austin RT, Bacmeister J, Chern J, Genio AD, Jiang JH, Kuang Z, Meng H, Minnis P, Platnick S, Rossow WB, Stephens GL, Sun-Mack S, Tao WK, Tompkins AM, Vane DG, Walker C, Wu D (2009) Cloud ice: a climate model challenge with signs and expectations of progress. J Geophys Res 114:D00A21. doi: 10.1029/2008JD010015 CrossRefGoogle Scholar
  50. Waliser DE, Li JLF, L’Ecuyer TS, Chen WT (2011) The impact of precipitating ice and snow on the radiation balance in global climate models. Geophys Res Lett 38:L06802. doi: 10.1029/2010GL046478
  51. Wang PH, Minnis P, McCormick MP, Kent GS, Skeens KM (1996) A 6-year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990). J Geophys Res 101(D23):29407–29429. doi: 10.1029/96JD01780 Google Scholar
  52. Waters JW, Froidevaux L, Harwood RS, Jarnot RF, Pickett HM, Read W, Siegel PH, Cofield RE, Filipiak MJ, Flower DA, Holden JR, Lau GK, Livesey NJ, Manney GL, Pumphrey HC, Santee ML, Wu WL, Cuddy DT, Lay RR, Loo MS, Perun VS, Schwartz MJ, Stek P, Thurstans RP, Boyles MA, Chandra KM, Chavez MC, Chen GS, Chudasama BV, Dodge R, Fuller RA, Girard MA, Jiang JH, Jiang YB, Knosp BW, LaBelle R, Lam JC, Lee KA, Miller D, Oswald JE, Patel NC, Pukala DM, Quintero O, Scaff DM, Snyder WV, Tope MC, Wagner P, Walch M (2006) The earth observing system microwave limb sounder (EOS MLS) on the Aura satellite. IEEE Trans Geosci Remote Sensing 44(5):1075–1092. doi: 10.1109/TGRS.2006.873771 CrossRefGoogle Scholar
  53. Wielicki BA, Barkstrom BR, Harrison EF, Lee RB, Smith GL, Cooper JE (1996) Clouds and the Earth’s Radiant Energy System CERES: an earth observing system experiment. Bull Am Meteorol Soc 77(5):853–868. doi: 10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2 CrossRefGoogle Scholar
  54. Winker DM, Hunt WH, McGill MJ (2007) Initial performance assessment of CALIOP. Geophys Res Lett 34(19):L19,803. doi: 10.1029/2007GL030135
  55. Wu DL, Austin RT, Deng M, Durden SL, Heymsfield AJ, Jiang JH, Lambert A, Li JL, Livesey NJ, McFarquhar GM et al (2009) Comparisons of global cloud ice from MLS, CloudSat, and correlative data sets. J Geophys Res 114:0148–0227. doi: 10.1029/2008JD009946 CrossRefGoogle Scholar
  56. Yang GY, Slingo J (2001) The diurnal cycle in the tropics. Mon Weather Rev 129:784–801. doi: 10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • M. S. Johnston
    • 1
    • 2
    Email author
  • P. Eriksson
    • 1
  • S. Eliasson
    • 3
  • C. G. Jones
    • 2
  • R. M. Forbes
    • 4
  • D. P. Murtagh
    • 1
  1. 1.Department of Earth and Space SciencesChalmers University of TechnologyGöteburgSweden
  2. 2.Swedish Meteorological and Hydrological Institute (SMHI)NorrköpingSweden
  3. 3.Department of Computer Science, Electrical and Space EngineeringLuleå University of TechnologyKirunaSweden
  4. 4.ECMWFReading, BerkshireUK

Personalised recommendations