Climate Dynamics

, Volume 40, Issue 11–12, pp 2707–2718 | Cite as

Atmospheric winter response to a projected future Antarctic sea-ice reduction: a dynamical analysis

  • Jürgen BaderEmail author
  • Martin Flügge
  • Nils Gunnar Kvamstø
  • Michel D. S. Mesquita
  • Aiko Voigt


Several studies have analysed the atmospheric response to sea-ice changes in the Arctic region, but only few have considered the Antarctic. Here, the atmospheric response to sea-ice variability in the Southern Hemisphere is investigated with the atmospheric general circulation model ECHAM5. The model is forced by the present and a projected future seasonal cycle of Antarctic sea ice. In September, the mean atmospheric response exhibits distinct similarities to the structure of the negative phase of the Southern Annular Mode, the leading mode of Southern Hemisphere variability. In the reduced Antarctic sea-ice integration, there is an equatorward shift of the Southern Hemisphere mid-latitude jet and the storm tracks. In contrast to a recent previous study, our findings indicate that a substantial impact of Southern Hemispheric future sea-ice reduction on the mid-latitude circulation cannot be ruled out.


Zonal Wind Storm Track Southern Annular Mode Equatorward Shift Eady Growth Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to two anonymous reviewers and Davide Zanchettin who has done the internal review at MPI-M. The UK Meteorological Office and Hadley Centre is acknowledged for providing the HadISST 1.1—global SST—data-set. We also thank Dr. Kevin Hodges (University of Reading, UK) for providing the storm tracking algorithm TRACK. This work was supported by the Max Planck Society, the Federal Ministry of Education and Research in Germany (BMBF) through the research programme “MiKlip” (FKZ: 01LP1158A) and by the DecCen project funded by the research council of Norway.


  1. Alexander MA, Bhatt US, Walsh JE, Timlin MS, Miller JS, Scott JD (2004) The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Clim 17(5):890–905Google Scholar
  2. Bader J, Mesquita MDS, Hodges KI, Keenlyside N, Østerhus S, Miles M (2011) A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: observations and projected changes. Atmos Res 101:809–834. doi: 10.1016/j.atmosres.2011.04.007 CrossRefGoogle Scholar
  3. Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543. doi: 10.1175/JCLI3815.1 CrossRefGoogle Scholar
  4. Brayshaw DJ, Hoskins B, Blackburn M (2008) The storm-track response to idealized SST perturbations in an aquaplanet GCM. J Atmos Sci 65(9):2842–2860. doi: 10.1175/2008JAS2657.1 CrossRefGoogle Scholar
  5. Deser C, Magnusdottir G, Saravanan R, Phillips A (2004) The effects of North Atlantic SST and Sea Ice Anomalies on the winter circulation in CCM3. Part II: direct and indirect components of the response. J Clim 17(5):877–889CrossRefGoogle Scholar
  6. Deser C, Tomas R, Alexander M, Lawrence D (2010) The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J Clim 23(2):333–351Google Scholar
  7. Hodges KI (1995) Feature tracking on the unit sphere. Mon Weather Rev 123:3458–3465. doi: 10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2 CrossRefGoogle Scholar
  8. Hodges KI (1996) Spherical nonparametric estimators applied to the UGAMP model integration for AMIP. Mon Weather Rev 124:2914–2932. doi: 10.1175/1520-0493(1996)124<2914:SNEATT>2.0.CO;2 CrossRefGoogle Scholar
  9. Hodges KI (1999) Adaptive constraints for feature tracking. Mon Weather Rev 127:1362–1373. doi: 10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2 CrossRefGoogle Scholar
  10. Holton J (2004) An introduction to dynamic meteorology. 4th edn. International Geophysics Series. Elsevier, AmsterdamGoogle Scholar
  11. Hoskins BJ, Hodges KI (2002) New perspectives on the Northern Hemisphere winter storm tracks. J Atmos Sci 59:1041–1061. doi: 10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2 CrossRefGoogle Scholar
  12. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196. doi: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2 CrossRefGoogle Scholar
  13. Hoskins BJ, Valdes PJ (1990) On the existence of storm-tracks. J Atmos Sci 47(15):1854–1864. doi: 10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2 Google Scholar
  14. IPCC (2007) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. Cambridge University Press, CambridgeGoogle Scholar
  15. Limpasuvan V, Hartmann DL (2000) Wave-maintained annular modes of climate variability. J Clim 13(24):4414–4429. doi: 10.1175/1520-0442(2000)013<4414:WMAMOC>2.0.CO;2 Google Scholar
  16. Kidston J, Gerber EP (2010) Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys Res Lett 37:L09708. doi: 10.1029/2010GL042873 Google Scholar
  17. Kidston J, Taschetto AS, Thompson DWJ, England MH (2011) The influence of Southern Hemisphere sea-ice extent on the latitude of the mid-latitude jet stream. Geophys Res Lett 38(15). doi: 10.1029/2011GL048056
  18. Kushnir Y, Robinson WA, Blad I, Hall NMJ, Peng S, Sutton R (2002) Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim 15(16):2233–2256CrossRefGoogle Scholar
  19. Magnusdottir G, Deser C, Saravanan R (2004) The effects of North Atlantic SST and Sea Ice Anomalies on the winter circulation in CCM3. Part I: Main Features and Storm Track Characteristics of the response. J Clim 17(5):857–876CrossRefGoogle Scholar
  20. Menéndez CG, Serafini V, Le Treut H (1999) The effect of sea-ice on the transient atmospheric eddies of the Southern Hemisphere. Clim Dynam 15(9):659–671. doi: 10.1007/s003820050308 CrossRefGoogle Scholar
  21. Mesquita Michel DS, Hodges Kevin I, Atkinson David E, Bader Jürgen (2010) Sea-ice anomalies in the Sea of Okhotsk and the relationship with storm tracks in the Northern Hemisphere during winter. Tellus A (October):no–no. doi: 10.1111/j.1600-0870.2010.00483.x
  22. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  23. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S et al. (2003) The atmospheric general circulation model ECHAM 5. Part I. Vol. 349. MPI-ReportGoogle Scholar
  24. Seierstad Ivar A, Bader Jürgen (2009) Impact of a projected future Arctic Sea Ice reduction on extratropical storminess and the NAO. Clim Dynam 33:937–943. doi: 10.1007/s00382-008-0463-x CrossRefGoogle Scholar
  25. Serreze Mark C, Holland Marika M, Stroeve Julienne (2007) Perspectives on the Arctics shrinking Sea-Ice cover. Science 315(5818):1533–1536. doi: 10.1126/science.1139426 CrossRefGoogle Scholar
  26. Turner J, Overland JE, Walsh JE (2007) An Arctic and antarctic perspective on recent climate change. Int J Climatol 27(3):277–293. doi: 10.1002/joc.1406 CrossRefGoogle Scholar
  27. Turner J, Overland J (2009) Contrasting climate change in the two polar regions. Polar Res 28(2):146–164. doi: 10.1111/j.1751-8369.2009.00128.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jürgen Bader
    • 1
    • 2
    Email author
  • Martin Flügge
    • 3
  • Nils Gunnar Kvamstø
    • 3
  • Michel D. S. Mesquita
    • 2
  • Aiko Voigt
    • 1
  1. 1.Max Planck Institute for MeteorologyHamburgGermany
  2. 2.Bjerknes Centre for Climate ResearchUni ResearchBergenNorway
  3. 3.Geophysical InstituteUniversity of BergenBergenNorway

Personalised recommendations