Climate Dynamics

, Volume 40, Issue 7–8, pp 1749–1766 | Cite as

The impact of the MJO on clusters of wintertime circulation anomalies over the North American region

  • Emily E. Riddle
  • Marshall B. Stoner
  • Nathaniel C. Johnson
  • Michelle L. L’Heureux
  • Dan C. Collins
  • Steven B. Feldstein


Recent studies have shown that the Madden–Julian Oscillation (MJO) impacts the leading modes of intraseasonal variability in the northern hemisphere extratropics, providing a possible source of predictive skill over North America at intraseasonal timescales. We find that a k-means cluster analysis of mid-level geopotential height anomalies over the North American region identifies several wintertime cluster patterns whose probabilities are strongly modulated during and after MJO events, particularly during certain phases of the El Niño-Southern Oscillation (ENSO). We use a simple new optimization method for determining the number of clusters, k, and show that it results in a set of clusters which are robust to changes in the domain or time period examined. Several of the resulting cluster patterns resemble linear combinations of the Arctic Oscillation (AO) and the Pacific/North American (PNA) teleconnection pattern, but show even stronger responses to the MJO and ENSO than clusters based on the AO and PNA alone. A cluster resembling the positive (negative) PNA has elevated probabilities approximately 8–14 days following phase 6 (phase 3) of the MJO, while a negative AO-like cluster has elevated probabilities 10–20 days following phase 7 of the MJO. The observed relationships are relatively well reproduced in the 11-year daily reforecast dataset from the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2). This study statistically links MJO activity in the tropics to common intraseasonal circulation anomalies over the North American sector, establishing a framework that may be useful for improving extended range forecasts over this region.


The Madden–Julian Oscillation (MJO) Tropical–extratropical connections Intraseasonal climate variability Extended range prediction Cluster analysis Model hindcasts The Arctic Oscillation (AO) The Pacific/North America pattern (PNA) 



Support for this work was provided by the NOAA Climate Test Bed and the NOAA Student Career Experience Program (SCEP). We would also like to thank Jon Gottschalck and Peitao Peng at the Climate Prediction Center and two anonymous reviews for their very helpful editorial comments on the manuscript.


  1. Barnston A, Livesey R (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126CrossRefGoogle Scholar
  2. Benedict JJ, Lee S, Feldstein SB (2004) Synoptic view of the North Atlantic Oscillation. J Atmos Sci 61:121–144. doi: 10.1175/1520-0469(2004)061<0121:SVOTNA>2.0.CO;2 CrossRefGoogle Scholar
  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Methodol 57:289–300Google Scholar
  4. Branstator G (1985) Analysis of general circulation model sea–surface temperature anomaly simulations using a linear model. Part I: forced solutions. J Atmos Sci 42:2225–2241. doi: 10.1175/1520-0469(1985)042<2225:AOGCMS>2.0.CO;2 CrossRefGoogle Scholar
  5. Cassou C (2008) Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature 455:523–527. doi: 10.1038/nature07286 CrossRefGoogle Scholar
  6. Christiansen B (2007) Atmospheric circulation regimes: can cluster analysis provide the number? J Clim 20:2229–2250. doi: 10.1175/JCLI4107.1 CrossRefGoogle Scholar
  7. Feldstein SB (2003) The dynamics of NAO teleconnection pattern growth and decay. Q J R Meteorol Soc 129:901–924. doi: 10.1256/qj.02.76 CrossRefGoogle Scholar
  8. Ferranti L, Palmer TN, Molteni F, Klinker E (1990) Tropical–extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J Atmos Sci 47:2177–2199. doi: 10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2 CrossRefGoogle Scholar
  9. Franzke C, Feldstein SB, Lee S (2011) Synoptic analysis of the Pacific-North American teleconnection pattern. Q J R Meteorol Soc 137:329–346. doi: 10.1002/qj.768 CrossRefGoogle Scholar
  10. Higgins RW, Mo KC (1997) Persistent North Pacific circulation anomalies and the Tropical Intraseasonal Oscillation. J Clim 10:223–244. doi: 10.1175/1520-0442(1997)010<0223:PNPCAA>2.0.CO;2 CrossRefGoogle Scholar
  11. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196. doi: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2 CrossRefGoogle Scholar
  12. Hsu H-H (1996) Global View of the intraseasonal Oscillation during Northern Winter. J Clim 9:2386–2406. doi: 10.1175/1520-0442(1996)009<2386:GVOTIO>2.0.CO;2 CrossRefGoogle Scholar
  13. Janowiak JE, Bell GD, Chelliah M (1999) A gridded data base of daily temperature maxima and minima for the conterminous United States, 1948–1993. U.S. Department of Commerce National Oceanic and Atmospheric Administration National Weather Service, Washington, DCGoogle Scholar
  14. Johnson NC, Feldstein SB (2010) The continuum of North Pacific sea level pressure patterns: intraseasonal, interannual, and interdecadal variability. J Clim 23:851–867. doi: 10.1175/2009JCLI3099.1 CrossRefGoogle Scholar
  15. Jones C, Gottschalck J, Carvalho LMV, Higgins W (2011) Influence of the Madden–Julian Oscillation on forecasts of extreme precipitation in the contiguous United States. Mon Weather Rev 139:332–350. doi: 10.1175/2010MWR3512.1 CrossRefGoogle Scholar
  16. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. B Am Meteorol Soc 77:437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  17. Knutson TR, Weickmann KM (1987) 30–60 day atmospheric oscillations: composite life cycles of convection and circulation anomalies. Mon Weather Rev 115:1407–1436. doi: 10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2 CrossRefGoogle Scholar
  18. L’Heureux ML, Higgins RW (2008) Boreal winter links between the Madden–Julian Oscillation and the Arctic Oscillation. J Clim 21:3040–3050. doi: 10.1175/2007JCLI1955.1 CrossRefGoogle Scholar
  19. L’Heureux ML, Thompson DWJ (2006) Observed Relationships between the El Niño-Southern Oscillation and the extratropical zonal-mean circulation. J Clim 19:276–287. doi: 10.1175/JCLI3617.1 CrossRefGoogle Scholar
  20. Lin H, Brunet G, Derome J (2009) An observed connection between the North Atlantic Oscillation and the Madden–Julian Oscillation. J Clim 22:364–380. doi: 10.1175/2008JCLI2515.1 CrossRefGoogle Scholar
  21. Lin H, Brunet G, Fontecilla JS (2010a) Impact of the Madden–Julian Oscillation on the intraseasonal forecast skill of the North Atlantic Oscillation. Geophys Res Lett 37:3–6. doi: 10.1029/2010GL044315 Google Scholar
  22. Lin H, Brunet G, Mo R (2010b) Impact of the Madden–Julian Oscillation on wintertime precipitation in Canada. Mon Weather Rev 138:3822–3839. doi: 10.1175/2010MWR3363.1 CrossRefGoogle Scholar
  23. Livezey RE, Chen WY (1983) Statistical field significance and its determination by Monte Carlo techniques. Mon Weather Rev 111:46–59. doi: 10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2 CrossRefGoogle Scholar
  24. Matthews AJ, Hoskins BJ, Masutani M (2004) The global response to tropical heating in the Madden–Julian Oscillation during the northern winter. Q J R Meteorol Soc 130:1991–2011. doi: 10.1256/qj.02.123 CrossRefGoogle Scholar
  25. Michelangeli P-A, Vautard R, Legras B (1995) Weather regimes: recurrence and quasi stationarity. J Atmos Sci 52:1237–1256. doi: 10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2 CrossRefGoogle Scholar
  26. Moon J-Y, Wang B, Ha K-J (2010) ENSO regulation of MJO teleconnection. Clim Dyn 37:1133–1149. doi: 10.1007/s00382-010-0902-3 CrossRefGoogle Scholar
  27. Moore RW, Martius O, Spengler T (2010) The modulation of the subtropical and extratropical atmosphere in the pacific basin in response to the Madden–Julian Oscillation. Mon Weather Rev 138:2761–2779. doi: 10.1175/2010MWR3194.1 CrossRefGoogle Scholar
  28. Mori M, Watanabe M (2008) The growth and triggering mechanisms of the PNA: a MJO-PNA coherence. J Meteorol Soc Jpn 86:213–236CrossRefGoogle Scholar
  29. Roundy PE, MacRitchie K, Asuma J, Melino T (2010) Modulation of the global atmospheric circulation by combined activity in the Madden–Julian Oscillation and the El Niño-Southern Oscillation during Boreal winter. J Clim 23:4045–4059. doi: 10.1175/2010JCLI3446.1 CrossRefGoogle Scholar
  30. Sardeshmukh PD, Hoskins BJ (1988) The generation of global rotational flow by steady idealized tropical divergence. J Atmos Sci 45:1228–1251. doi: 10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2 CrossRefGoogle Scholar
  31. Schrage JM, Vincent DG, Fink AH (1999) Modulation of intraseasonal (25–70 day) processes by the superimposed ENSO cycle across the Pacific Basin. Meteorol Atmos Phys 70:15–27. doi: 10.1007/s007030050022 CrossRefGoogle Scholar
  32. Seo K-H, Son S-W (2012) The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian Oscillation during northern winter. J Atmos Sci 69:79–96. doi: 10.1175/2011JAS3686.1 CrossRefGoogle Scholar
  33. Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau N-C, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103:14291–14324. doi: 10.1029/97JC01444 CrossRefGoogle Scholar
  34. Vitart F, Molteni F (2010) Simulation of the Madden–Julian Oscillation and its teleconnections in the ECMWF forecast system. Q J R Meteorol Soc 136:842–855. doi: 10.1002/qj.623 CrossRefGoogle Scholar
  35. Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932. doi: 10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2 CrossRefGoogle Scholar
  36. Wilks DS (2006) On “field significance” and the false discovery rate. J Appl Meteorol Clim 45:1181–1189. doi: 10.1175/JAM2404.1 CrossRefGoogle Scholar
  37. Wilks DS (2011) Statistical methods in the atmospheric sciences, 3rd ed, vol 100, International Geophysics Series. Academic Press, London, p 676Google Scholar
  38. Yao W, Lin H, Derome J (2011) Submonthly forecasting of winter surface air temperature in North America based on organized tropical convection. Atmos Ocean 49:51–60. doi: 10.1080/07055900.2011.556882 CrossRefGoogle Scholar
  39. Zhang C (2005) Madden–Julian oscillation. Rev Geophys 43:RG2003. doi: 10.1029/2004RG000158
  40. Zhou S, Miller AJ (2005) The Interaction of the Madden–Julian Oscillation and the Arctic Oscillation. J Clim 18:143–159CrossRefGoogle Scholar
  41. Zhou Y, Thompson KR, Lu Y (2011) Mapping the relationship between northern hemisphere winter surface air temperature and the Madden–Julian Oscillation. Mon Weather Rev 139:2439–2454. doi: 10.1175/2011MWR3587.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Emily E. Riddle
    • 1
    • 2
  • Marshall B. Stoner
    • 1
  • Nathaniel C. Johnson
    • 3
  • Michelle L. L’Heureux
    • 1
  • Dan C. Collins
    • 1
  • Steven B. Feldstein
    • 4
  1. 1.Climate Prediction CenterNCEP/NWS/NOAACollege ParkUSA
  2. 2.Wyle Science Technology and EngineeringMcLeanUSA
  3. 3.International Pacific Research Center, School of Ocean Earth Science and TechnologyUniversity of HawaiiHonoluluUSA
  4. 4.Department of MeteorologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations