Climate Dynamics

, Volume 41, Issue 3–4, pp 695–720 | Cite as

Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble

  • Didier SwingedouwEmail author
  • Christian B. Rodehacke
  • Erik Behrens
  • Matthew Menary
  • Steffen M. Olsen
  • Yongqi Gao
  • Uwe Mikolajewicz
  • Juliette Mignot
  • Arne Biastoch


The recent increase in the rate of the Greenland ice sheet melting has raised with urgency the question of the impact of such a melting on the climate. As former model projections, based on a coarse representation of the melting, show very different sensitivity to this melting, it seems necessary to consider a multi-model ensemble to tackle this question. Here we use five coupled climate models and one ocean-only model to evaluate the impact of 0.1 Sv (1 Sv = 106 m3/s) of freshwater equally distributed around the coast of Greenland during the historical era 1965–2004. The ocean-only model helps to discriminate between oceanic and coupled responses. In this idealized framework, we find similar fingerprints in the fourth decade of hosing among the models, with a general weakening of the Atlantic Meridional Overturning Circulation (AMOC). Initially, the additional freshwater spreads along the main currents of the subpolar gyre. Part of the anomaly crosses the Atlantic eastward and enters into the Canary Current constituting a freshwater leakage tapping the subpolar gyre system. As a consequence, we show that the AMOC weakening is smaller if the leakage is larger. We argue that the magnitude of the freshwater leakage is related to the asymmetry between the subpolar-subtropical gyres in the control simulations, which may ultimately be a primary cause for the diversity of AMOC responses to the hosing in the multi-model ensemble. Another important fingerprint concerns a warming in the Nordic Seas in response to the re-emergence of Atlantic subsurface waters capped by the freshwater in the subpolar gyre. This subsurface heat anomaly reaches the Arctic where it emerges and induces a positive upper ocean salinity anomaly by introducing more Atlantic waters. We found similar climatic impacts in all the coupled ocean–atmosphere models with an atmospheric cooling of the North Atlantic except in the region around the Nordic Seas and a slight warming south of the equator in the Atlantic. This meridional gradient of temperature is associated with a southward shift of the tropical rains. The free surface models also show similar sea-level fingerprints notably with a comma-shape of high sea-level rise following the Canary Current.


Greenland ice sheet melting Thermohaline circulation Oceanic gyre Ocean–atmosphere interactions Oceanic dynamics Sea-level rise AMOC North Atlantic 



The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 212643 (THOR). DS and JM also acknowledge financial support from the CNRS/INSU/LEFE/EVE French program through the Ti Ammo project. CR performed these simulations at the German Climate Computing Centre (DKRZ), Hamburg. DS and JM benefited of the HPC resources of CCRT and IDRIS made available by GENCI (Grand Equipement National de Calcul Intensif).


  1. Biastoch A, Böning CW, Getzlaff J, Molines J-M, Madec G (2008) Mechanisms of interannual—decadal variability in the meridional overturning circulation of the mid-latitude North Atlantic Ocean. J Clim 21:6599–6615. doi: 10.1175/2008JCLI2404.1 CrossRefGoogle Scholar
  2. Blanke B, Delecluse P (1993) Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388CrossRefGoogle Scholar
  3. Böning CW, Scheinert M, Dengg J, Biastoch A, Funk A (2006) Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys Res Lett 33(21):1–5. doi: 10.1029/2006GL026906 CrossRefGoogle Scholar
  4. Bryan F (1987) Parameter sensitivity of primitive equation ocean general circulation models. J Phys Oceanogr 17:970–985CrossRefGoogle Scholar
  5. Bryden HL, Longworth HR, Cunningham SA (2005) Slowing of the Atlantic meridional overturning circulation at 25°N. Nature 438:655–657CrossRefGoogle Scholar
  6. Cazenave A, Remy F (2011) Sea level and climate: measurements and causes of changes. Wiley Interdiscip Rev 2:647–662. doi: 10.1002/wcc.139 CrossRefGoogle Scholar
  7. Chiang JCH, Bitz CM (2005) Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim Dyn 25:477–496CrossRefGoogle Scholar
  8. Christoffersen P, Mugford RI, Heywood KJ, Joughin I, Dowdeswell JA, Syvitski JPM, Luckman A, Benham TJ (2011) Warming of waters in an East Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions. Cryosphere 5(3):701–714. doi: 10.5194/tc-5-701-2011 CrossRefGoogle Scholar
  9. Clement AC, Peterson LC (2008) Mechanisms of abrupt climate change of the last glacial period. Rev Geophys 46:RG4002. doi: 10.1029/2006RG000204 CrossRefGoogle Scholar
  10. Condron A, Winsor P (2011) A subtropical fate awaited fresh water discharged from glacial Lake Agassiz. Geophys Res Lett 38:L03705. doi: 10.1029/2010GL046011 CrossRefGoogle Scholar
  11. Crowley TJ (1992) North Atlantic deep waters cools the Southern Hemisphere. Paleoceanography 7:489–497CrossRefGoogle Scholar
  12. Driesschaert E, Fichefet T, Goosse H, Huybrechts P, Janssens I, Mouchet A, Munhoven G, Brovkin V, Weber SL (2007) Modelling the influence of Greenland ice sheet melting on the Atlantic meridional overturning circulation during the next millennia. Geophys Res Lett 34:L1070CrossRefGoogle Scholar
  13. Dufresne J-L, Foujols M-A, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel J-P, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix J-Y, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre M-P, Lefevre F, Levy C, Li ZX., Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N (submitted) Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim DynGoogle Scholar
  14. Fedoseev A (1970) Geostrophic circulation of surface waters on the shelf of north-west Africa. Rapp P-V Reun Cons Int Explor Mer 159:32–37Google Scholar
  15. Frankignoul C, Deshayes J, Curry R (2009) The role of salinity in the decadal variability of the North Atlantic meridional overturning circulation. Clim Dyn. doi: 10.1007/s00382-008-0523-2
  16. Gaspar P (1988) Modelling the seasonal cycle of the upper ocean, 1. Phys Oceanogr 18:161–180CrossRefGoogle Scholar
  17. Gerdes R, Hurlin W, Griffies SM (2006) Sensitivity of a global ocean model to increased run-off from Greenland. Ocean Model 12(3–4):416–435. ISSN:1463-5003, doi: 10.1016/j.ocemod.2005.08.003
  18. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168CrossRefGoogle Scholar
  19. Gregory JM, Tailleux R (2011) Kinetic energy analysis of the response of the Atlantic meridional overturning circulation to CO2-forced climate change. Clim Dyn 37:893–914CrossRefGoogle Scholar
  20. Greve R (1997) Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios. J Clim 10(5):901–918. doi: 10.1175/1520-0442 CrossRefGoogle Scholar
  21. Greve R, Hutter K, Giu E (1995) Polythermal three-dimensional modelling of the Greenland ice sheet with varied geothermal heat flux. Ann Glaciol 21:8–12Google Scholar
  22. Hawkins E, Smith RS, Allison LC, Gregory JM, Woollings TJ, Pohlmann H, de Cuevas B (2011) Bistability of the Atlantic overturning circulation in a global climate model and links to ocean fresh water transport. Geophys Res Lett 38:L10605. doi: 10.1029/2011GL047208 Google Scholar
  23. Heinrich H (1988) Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130 000 years. Quat Res 29:142–152CrossRefGoogle Scholar
  24. Holland DM, Thomas RH, de Young B, Ribergaard MH, Lyberth B (2008) Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat Geosci 1(10):659–664. doi: 10.1038/ngeo316 CrossRefGoogle Scholar
  25. Hu A, Meehl GA, Han W, Yin J (2011) Effect of the potential melting of the Greenland ice sheet on the meridional overturning circulation and global climate in the future. Deep Sea Res Part II 58(17–18):1914–1926. doi: 10.1016/j.dsr2.2010.10.069 CrossRefGoogle Scholar
  26. Huybrechts P, de Wolde J (1999) The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J Clim 12(8):2169–2188. doi: 10.1175/1520-0442 CrossRefGoogle Scholar
  27. Huybrechts P, Janssens I, Poncin C, Fichefet T (2002) The response of the Greenland ice sheet to climate changes in the 21st century by interactive coupling of an AOGCM with a thermomechanical ice-sheet model. Ann Glaciol 35(1):409–415. doi: 10.3189/172756402781816537 CrossRefGoogle Scholar
  28. Johns WE, Shay TJ, Bane JM, Watts DR (1995) Gulf Stream structure, transport and recirculation near 68°W. J Geophys Res 100:817–838CrossRefGoogle Scholar
  29. Jungclaus JH, Haak H, Esch M, Roeckner E, Marotzke J (2006) Will Greenland melting halt the thermohaline circulation? Geophys Res Lett 33, Article Number: L17708Google Scholar
  30. Jungclaus JH, Fischer N, Haak H, Lohmann K, Marotzke J, Matei D, Mikolajewicz U, Notz D, von Storch JS (submitted) Characteristics of the ocean simulations in MPIOM, the ocean component of the MPI-earth system model. J Adv Model Earth SystGoogle Scholar
  31. Kageyama M, Paul A, Roche DM, Van Meerbeeck CJ (2010) Modelling glacial climatic millennial-scale variability related to changes in the Atlantic meridional overturning circulation: a review. Quat Sci Rev 29:2931–2956CrossRefGoogle Scholar
  32. Kanzow T, Cunningham SA, Johns WE, Hirschi JJ-M, Marotzke J, Baringer MO, Meinen CS, Chidichimo MP, Atkinson C, Beal LM, Bryden HL, Collins J (2010) Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N. J Clim 23:5678–5698. doi: 10.1175/2010JCLI3389.1 CrossRefGoogle Scholar
  33. Kleinen T, Osborn TJ, Briffa KR (2009) Sensitivity of climate response to variations in fresh water hosing location. Ocean Dyn 59:509–521. doi: 10.1007/s10236-009-0189-2 CrossRefGoogle Scholar
  34. Kopp RE, Mitrovica JX, Griffies SM, Yin J, Hay CC, Stouffer RJ (2010) The impact of Greenland melt on local sea levels: a partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments. Clim Chang 103(3–4). doi: 10.1007/s10584-010-9935-1
  35. Large WG, Yeager SG (2009) The global climatology of an interannually varying air-sea flux data set. Clim Dyn 33:341–364. doi: 10.1007/s00382-008-0441-3 CrossRefGoogle Scholar
  36. Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403. doi: 10.1029/94RG01872 CrossRefGoogle Scholar
  37. Levermann A, Born A (2007) Bistability of the Atlantic subpolar gyre in a coarse resolution climate model. Geophys Res Lett 34:L24605CrossRefGoogle Scholar
  38. Levermann A, Griesel A, Hofmann M, Montoya M, Rahmstorf S (2005) Dynamic sea level changes following changes in the thermohaline circulation. Clim Dyn 24:347–354CrossRefGoogle Scholar
  39. Levitus S et al (1998) Introduction, vol 1. World Ocean Database 1998. NOAA Atlas NESDIS 18, NOAA/NESDIS, U.S. Dept. of Commerce, Washington, DCGoogle Scholar
  40. Lorbacher K, Dengg J, Böning CW, Biastoch A (2010) Regional patterns of sea level change related to interannual variability and multi-decadal trends in the Atlantic meridional overturning circulation. J Clim 23:4243–4254. doi: 10.1175/2010JCLI3341.1 CrossRefGoogle Scholar
  41. Madec G (2008) NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No. 27, ISSN:1288-1619Google Scholar
  42. Maier-Reimer E, Mikolajewicz U (1989) Experiments with an OGCM on the cause of the Younger Dryas. MPI Rep 39, Hamburg, GermanyGoogle Scholar
  43. Manabe S, Stouffer RJ (1988) Two stable equilibria of a coupled ocean–atmosphere model. J Clim 1:841–866CrossRefGoogle Scholar
  44. Marsh R, Desbruyeres D, Bamber JL, De Cuevas BA, Coward AC, Aksenov Y (2010) Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model. Ocean Sci 6(3):749–760CrossRefGoogle Scholar
  45. Marti O, Braconnot P, Dufresne JL, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Codron F, de Noblet N, Denvil S, Fairhead L, Fichefet T, Foujols MA, Friedlingstein P, Goosse H, Grandpeix JY, Guilyardi E, Hourdin F, Idelkadi A, Kageyama M, Krinner G, Lévy C, Madec G, Mignot J, Musat I, Swingedouw D, Talandier C (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34:1–26. doi: 10.1007/s00382-009-0640-6 Google Scholar
  46. Menary MB, Park W, Lohmann K, Vellinga M, Palmer MD, Latif M, Jungclaus JH (2012) A multimodel comparison of centennial Atlantic meridional overturning circulation variability. Clim Dyn 38:2377–2388. doi: 10.1007/s00382-011-1172-4 Google Scholar
  47. Mignot J, Frankignoul C (2005) On the variability of the Atlantic meridional overturning circulation, the NAO and the ENSO in the Bergen Climate Model. J Clim 18(13):2361–2375CrossRefGoogle Scholar
  48. Mignot J, Frankignoul C (2010) Local and remote impacts of a tropical Atlantic salinity anomaly. Clim Dyn 35(7–8):1133–1147CrossRefGoogle Scholar
  49. Mignot J, Ganopolski A, Levermann A (2007) Atlantic subsurface temperatures: response to a shut-down of the overturning circulation and consequences for its recovery. J Clim 20:4884–4898CrossRefGoogle Scholar
  50. Mikolajewicz U, Maier-Reimer E (1994) Mixed boundary conditions in ocean general circulation models and their influence on the stability of the model’s conveyor belt. J Geophys Res 99(C11):22633–22644CrossRefGoogle Scholar
  51. Mikolajewicz U, Vizcaíno M, Jungclaus J, Schurgers G (2007) Effect of ice sheet interactions in anthropogenic climate change simulations. Geophys Res Lett 34:L18706. doi: 10.1029/2007GL031173 CrossRefGoogle Scholar
  52. Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026–1029CrossRefGoogle Scholar
  53. Msadek R, Dixon KW, Delworth TL, Hurlin W (2010) Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys Res Lett 37:L19608. doi: 10.1029/2010GL044517
  54. Nakamura M, Stone PH, Marotzke J (1994) Destabilization of the thermohaline circulation by atmospheric eddy transports. J Clim 7:1870–1882CrossRefGoogle Scholar
  55. Otterå OH, Bentsen M, Drange H, Suo L (2010) External 675 forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3:688–694. doi: 10.1038/ngeo955 CrossRefGoogle Scholar
  56. Pacanowski R, Philander SGH (1981) Parameterization of vertical mixing in numerical models of tropical oceans. J Phys Oceanogr 11:1443–1451CrossRefGoogle Scholar
  57. Peterson LC, Haug GH, Hughen KA, Rohl U (2000) Rapid changes in the hydrologic cycle of the tropical North Atlantic during the last glacial. Science 290:1947–1951CrossRefGoogle Scholar
  58. Pritchard HD, Arthern RJ, Vaughan DG, Edwards L (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461(7266):971–975. doi: 10.1038/nature08471 CrossRefGoogle Scholar
  59. Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419(6903):207–214. doi: 10.1038/nature01090 CrossRefGoogle Scholar
  60. Rahmstorf S, Willebrand J (1995) The role of temperature feedback in stabilizing the thermohaline circulation. J Phys Oceanogr 25:787–805CrossRefGoogle Scholar
  61. Rahmstorf S, Crucifix M, Ganopolski A, Goosse H, Kamenkovich IV, Knutti R, Lohmann G, Marsh R, Mysak LA, Wang Z, Weaver AJ (2005) Thermohaline circulation hysteresis: a model intercomparison. Geophys Res Lett 32:L23605. doi: 10.1029/2005GL023655 CrossRefGoogle Scholar
  62. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  63. Ridley JK, Huybrechts P, Gregory JM, Lowe JA (2005) Elimination of the Greenland ice sheet in a high CO2 climate. J Clim 18:3409–3427CrossRefGoogle Scholar
  64. Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38:L05503Google Scholar
  65. Roche DM (2009) A systematic study of the impact of fresh water pulses with respect to different geographical locations. Clim Dyn. doi: 10.1007/s00382-009-0578-8 Google Scholar
  66. Rooth C (1982) Hydrology and ocean circulation. Progr Ocean 11:131–149CrossRefGoogle Scholar
  67. Roullet G, Madec G (2000) Salt conservation, free surface and varying levels: a new formulation for ocean general circulation models. J Geophys Res 23:927–942Google Scholar
  68. Rypina II, Pratt LJ, Lozier MS (2011) Near-surface transport pathways in the North Atlantic Ocean: looking for throughput from the subtropical to the subpolar gyre. J Phys Oceanogr 41(5):911–925. doi: 10.1175/2010JPO4498.1 CrossRefGoogle Scholar
  69. Saenko OA, Weaver AJ, Robitaille DY, Flato GM (2007) Warming of the subpolar Atlantic triggered by fresh water discharge at the continental boundary. Geophys Res Lett 34:L15604. doi: 10.1029/2007GL030674 CrossRefGoogle Scholar
  70. Sasgen I, van den Broeke M, Bamber JL, Rignot E, Sørensen LS, Wouters B, Martinec Z, Velicogna I, Simonsen SB (2012) Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet Sci Lett 333–334:293–303. doi: 10.1016/j.epsl.2012.03.033 CrossRefGoogle Scholar
  71. Schiller A, Mikolajewicz U, Voss R (1997) The stability of the North Atlantic thermohaline circulation in a coupled ocean-atmosphere general circulation model. Clim Dyn 13(5):325–347CrossRefGoogle Scholar
  72. Shimokawa S, Matsuura T (1999) The asymmetry of recirculation of a double gyre in a two layer ocean. J Oceanogr 55:449–462CrossRefGoogle Scholar
  73. Stammer D (2008) Response of the global ocean to Greenland and Antarctic ice melting. J Geophys Res 113:C06022. doi: 10.1029/2006JC004079 CrossRefGoogle Scholar
  74. Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high-quality Arctic Ocean. J Clim 14:2079–2087CrossRefGoogle Scholar
  75. Sterl A, Bintanja R, Brodeau L, Gleeson E, Koenigk T, Schmith T, Semmler T, Severijns C, Wyser K, Yang S (2011) A look at the ocean in the EC-Earth climate model. Clim Dyn (accepted for publication). doi: 10.1007/s00382-011-1239-2
  76. Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13:224–230Google Scholar
  77. Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387CrossRefGoogle Scholar
  78. Straneo F, Hamilton GS, Sutherland DA, Stearns LA, Davidson F, Hammill MO, Stenson GB, Rosing-Asvid A (2010) Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nat Geosci 3(3):182–186. doi: 10.1038/ngeo764 CrossRefGoogle Scholar
  79. Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) Quantifying the AMOC feedbacks during a 2× CO2 stabilization experiment with land-ice melting. Clim Dyn 29:521–534CrossRefGoogle Scholar
  80. Swingedouw D, Mignot J, Braconnot P, Mosquet E, Kageyama M, Alkama R (2009) Impact of fresh water release in the North Atlantic under different climate conditions in an OAGCM. J Clim 22:6377–6403CrossRefGoogle Scholar
  81. Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning streamfunctions for the global ocean. J Clim 16:3213–3226Google Scholar
  82. Vizcaíno M, Mikolajewicz U, Jungclaus J, Schurgers G (2010) Climate modification by future ice sheet changes and consequences for ice sheet mass balance. Clim Dyn 34(2–3):301–324. doi: 10.1007/s00382-009-0591-y CrossRefGoogle Scholar
  83. Walsh KM, Howat IM, Ahn Y, Enderlin EM (2012) Changes in the marine-terminating glaciers of central east Greenland, 2000–2010. Cryosphere 6(1):211–220. doi: 10.5194/tc-6-211-2012 CrossRefGoogle Scholar
  84. Winguth A, Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Vizcaíno M (2005) Centennial-scale interactions between the carbon cycle and anthropogenic climate change using a dynamic earth system model. Geophys Res Lett 32(23):2005CrossRefGoogle Scholar
  85. Yin J, Stouffer RJ, Spelman MJ, Griffies SM (2010) Evaluating the uncertainty induced by the virtual salt flux assumption in climate simulations and future projections. J Clim 23:80–96. doi: 10.1175/2009JCLI3084.1 CrossRefGoogle Scholar
  86. Zhang R (2008) Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys Res Lett 35:L20705. doi: 10.1029/2008GL035463

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Didier Swingedouw
    • 1
    Email author
  • Christian B. Rodehacke
    • 2
  • Erik Behrens
    • 3
  • Matthew Menary
    • 4
  • Steffen M. Olsen
    • 5
  • Yongqi Gao
    • 6
  • Uwe Mikolajewicz
    • 2
  • Juliette Mignot
    • 7
  • Arne Biastoch
    • 3
  1. 1.LSCE/IPSLGif-sur-YvetteFrance
  2. 2.Max-Planck-Institut für MeteorologieHamburgGermany
  3. 3.GEOMAR/Helmhotz Centre for Ocean ResearchKielGermany
  4. 4.Met Office Hadley CentreExeterUK
  5. 5.DMICopenhagenDenmark
  6. 6.NERSCBergenNorway
  7. 7.LOCEAN/IPSLParisFrance

Personalised recommendations