Climate Dynamics

, Volume 40, Issue 9–10, pp 2359–2380 | Cite as

Decadal predictability of the Atlantic meridional overturning circulation and climate in the IPSL-CM5A-LR model

  • A. Persechino
  • J. Mignot
  • D. Swingedouw
  • S. Labetoulle
  • E. Guilyardi


This study explores the decadal potential predictability of the Atlantic Meridional Overturning Circulation (AMOC) as represented in the IPSL-CM5A-LR model, along with the predictability of associated oceanic and atmospheric fields. Using a 1000-year control run, we analyze the prognostic potential predictability (PPP) of the AMOC through ensembles of simulations with perturbed initial conditions. Based on a measure of the ensemble spread, the modelled AMOC has an average predictive skill of 8 years, with some degree of dependence on the AMOC initial state. Diagnostic potential predictability of surface temperature and precipitation is also identified in the control run and compared to the PPP. Both approaches clearly bring out the same regions exhibiting the highest predictive skill. Generally, surface temperature has the highest skill up to 2 decades in the far North Atlantic ocean. There are also weak signals over a few oceanic areas in the tropics and subtropics. Predictability over land is restricted to the coastal areas bordering oceanic predictable regions. Potential predictability at interannual and longer timescales is largely absent for precipitation in spite of weak signals identified mainly in the Nordic Seas. Regions of weak signals show some dependence on AMOC initial state. All the identified regions are closely linked to decadal AMOC fluctuations suggesting that the potential predictability of climate arises from the mechanisms controlling these fluctuations. Evidence for dependence on AMOC initial state also suggests that studying skills from case studies may prove more useful to understand predictability mechanisms than computing average skill from numerous start dates.


Decadal climate predictability Atlantic meridional overturning circulation Diagnostic and prognostic potential predictability Ocean and climate dynamics 



This work was supported by the “Gestion des Impacts du Changement Climatique” Programme (GICC) under the EPIDOM project funded by MEDDTL (French Ministery of Ecology and sustained development). The authors are grateful to Bablu Sinha, Roland Séférian and Lisl Weynans for their useful comments. We also thank the anonymous reviewers for their very useful comments.


  1. Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Global Biogeochem Cycles 20, GB2017, doi: 10.1029/2005GB002591
  2. Boer GJ (2001) Decadal potential predictability in coupled models. CLIVAR exchanges, vol. 129, no. 3Google Scholar
  3. Boer GJ (2004) Long-timescale potential predictability in an ensemble of coupled climate models. Clim Dyn 23:29–44CrossRefGoogle Scholar
  4. Boer GJ (2011) Decadal potential predictability of twenry-first century climate. Clim Dyn 36:1119–1133. doi: 10.1007/s00382-010-0747-9 CrossRefGoogle Scholar
  5. Boer GJ, Lambert SJ (2008) Multi-model decadal potential predictability of precipitations and temperature. Geophys Res Lett 35:L05706. doi: 10.1029/2008GL033234 CrossRefGoogle Scholar
  6. Branstator G, Teng H, Meehl G, Kimoto M, Knight J, Latif M, Rosati A (2012) Systematic estimates of initial value decadal predictability for six AOGCMs. J Climate 25:1827–1846CrossRefGoogle Scholar
  7. Brearley JA, Pickart RS, Valdimarsson H, Jonsson S, Schmitt RW, Haine TWN (2012) The East Greenland boundary current system south of Denmark Strait. Deep Sea Res Part I 63:1–19. doi: 10.1016/j.dsr.2012.01.001 CrossRefGoogle Scholar
  8. Bretherton CS et al (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009CrossRefGoogle Scholar
  9. Chen D, Cane MA, Kaplan A, Zebiak SE, Huang D (2004) Predictability of El Niño over the past 148 years. Nature 428:733–736CrossRefGoogle Scholar
  10. Chiang JCH, Cheng W, Bitz CM (2008) Fast teleconnections to the tropical Atlantic sector from the Atlantic thermohaline adjustment. Geophys Res Lett 35:L07704. doi: 10.1029/2008GL033292 CrossRefGoogle Scholar
  11. Collins M (2002) Climate predictability on interannual to decadal timescales: the initial value problem. Clim Dyn 19:671–692CrossRefGoogle Scholar
  12. Collins M, Sinha B (2003) Predictable Decadal Variations in the Thermohaline Circulation and Climate. Geophys Res Lett 30(6). doi: 10.1029/2002GLO16504
  13. Collins M, Botzet M, Carril A, Drange H, Jouzeau A, Latif M, Otteraa OH, Pohlmann H, Sorteberg A, Sutton R, Terray L (2006) Interannual to decadal climate predictability in the North Atlantic: a multi-model ensemble study. J Clim 19:1195–1203CrossRefGoogle Scholar
  14. Curry R, Dickson B, Yashayaev I (2003) A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426:826–829CrossRefGoogle Scholar
  15. Delworth TL, Mann ME (2000) Observed and simulated multi-decadal variability in the Northern Hemisphere. Clim Dyn 16:661–676CrossRefGoogle Scholar
  16. Dufresne JL et al. (2012) climate change projections using the ISPL-CM5 earth system model: from CMIP3 to CMIP5. Clim Dyn (in revision)Google Scholar
  17. Dunstone NJ, Smith DM, Eade R (2011) Multi-year predictability of the tropical Atlantic atmosphere driven by the high latitude North Atlantic Ocean. Geophys Res Lett 38(14):L14701. doi: 10.1029/2011GL047949 CrossRefGoogle Scholar
  18. Escudier R, Mignot J, Swingedouw D (2012) A coupled ocean-sea ice-atmosphere decadal variability mode in the North Atlantic in an AOGCM. Clim Dyn (accepted)Google Scholar
  19. Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:2609–2612CrossRefGoogle Scholar
  20. Fisher RA (1921) On the ‘probable error’ of a coefficient of correlation deduced from a small sample. Metron 1(4):3–32Google Scholar
  21. Folland CK, Parker DE, Palmer TN (1986) Sahel rainfall and worldwide sea temperatures, 1901–85. Nature 320:602–607CrossRefGoogle Scholar
  22. Frankignoul C (1985) Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes. Rev Geo phys 23:357–390CrossRefGoogle Scholar
  23. Frankignoul C, Hasselmann K (1977) Stochastic climate models. Part II: application to sea-surface temperature variability and thermocline variability. Tellus 29:284–305Google Scholar
  24. Frankignoul C, Kestenare E, Mignot J (2002) The surface heat flux feedback. Part II: direct and indirect estimates in the ECHAM4/OPA8 coupled GCM. Clim Dyn 19:649–655CrossRefGoogle Scholar
  25. Gastineau G, D’Andrea F, Frankignoul C (2012) Atmospheric response to the North Atlantic Ocean variability on seasonal to decadal timescales in IPSL-CM5. Clim dyn (accepted)Google Scholar
  26. Griffies SM, Bryan K (1997) Predictability of North Atlantic multidecadal climate variability. Science 275(5297):181–184CrossRefGoogle Scholar
  27. Hawkins E, Sutton R (2008) Potential predictability of rapid changes in the Atlantic meridional overturning circulation. Geophys Res Lett 35:L11603. doi: 10.1029/2008GL034059 CrossRefGoogle Scholar
  28. Hawkins E, Robson J, Sutton R, Smith D, Keenlyside N (2011) Evaluating the potential for statistical decadal predictions of sea surface temperatures with a perfect model approach. Clim Dyn. doi: 10.1007/s00382-011-1023-3 Google Scholar
  29. Hermanson L, Sutton RT (2009) Climate predictability in the second year. Philos Trans R Soc A 367:913–916CrossRefGoogle Scholar
  30. Hourdin F, Foujols MA, Codron F, Guemas V, Dufresne JL, Bony S, Denvil S, Guez L, Lott F, Ghattas J, Braconnot P, Marti O, Meurdesoif Y, Bopp L (2012) Climate and sensitivity of the IPSL-CM5A coupled model: impact of the LMDZ atmospheric grid configuration. Clim Dyn (in revision)Google Scholar
  31. Hurrell J, Meehl G, Bader D, Delworth T, Kirtman B, Wielicki B (2009) A unified modeling approach to climate system prediction. Bull Am Meteor Soc 90:1819–1832. doi: 10.1175/2009BAMS2752.1 CrossRefGoogle Scholar
  32. Kerr RA (2000) A north Atlantic climate pacemaker for the centuries. Science 288(5473):1984CrossRefGoogle Scholar
  33. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi: 10.1029/2005GL024233 CrossRefGoogle Scholar
  34. Knight J, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett 33:L17706. doi: 10.1029/2006GL026242 CrossRefGoogle Scholar
  35. Krinner GN, et al. (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Biogeochem Cyc 19. doi: 10.1029/2003GB002199
  36. Kushnir Y (1994) Interdecadal variations in north Atlantic sea surface temperature and associated atmospheric conditions. J Clim 7(1):142–157CrossRefGoogle Scholar
  37. Latif M, Roeckner E, Botzet M, Esch M, Haak H, Hagemann S, Jungclaus J, Legutke S, Marsland S, Mikolajewicz U (2004) Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J Clim 17:1605–1614CrossRefGoogle Scholar
  38. Livezey RE, Chen WY (1983) Statistical field significance and its determination by Monte Carlo techniques. Mon Weather Rev 111:46–59CrossRefGoogle Scholar
  39. Madden RA (1976) Estimates of the natural variability of time-averaged sea-level pressure. Mon Weather Rev 104:942–952CrossRefGoogle Scholar
  40. Madec G (2008) NEMO ocean engine, note du Pole de modelisation, Institut Pierre-Simon Laplace (IPSL)Google Scholar
  41. Meehl GA, Goddard L, Murphy J, Stouffer RJ, Boer G, Danabasoglu G, Dixon K, Giorgetta MA, Greene A, Hawkins E, Hegerl G, Karoly D, Keenlyside N, Kimoto M, Kirtman B, Navarra A, Pulwarty R, Smith D, Stammer D, Stockdale T (2009) Decadal prediction: can it be skillful? Bull Am Meteor Soc 90:1467–1485CrossRefGoogle Scholar
  42. Msadek R, Frankignoul C (2009) Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Clim Dyn. doi: 10.1007/s00382-008-0452-0 Google Scholar
  43. Msadek R, Dixon KW, Delworth TL, Hurlin W (2010) Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys Res Lett 37:L19608. doi: 10.1029/2010GL044517 Google Scholar
  44. National Research Council; Committee on Assessment of Intraseasonal to Interannual Climate Predition and Predictability (2010) Assessment of Intraseasonal to Interannual Climate Prediction and Predictability. National Academy of Science, Washington, p 192Google Scholar
  45. Newman M, Sardeshmukh PD, Winkler CR, Whitaker JS (2003) A study of subseasonal predictability. Mon Weather Rev 131:1715–1732CrossRefGoogle Scholar
  46. Persechino A, Marsh R, Sinha B, Megann A, Blaker A, New A (2012) Decadal-timescale changes of the Atlantic overturning circulation and climate in a coupled climate model with a hybrid-coordinate ocean component. Clim Dyn 39(3):1021–1042Google Scholar
  47. Pohlmann H, Botzet M, Latif M, Roesch A, Wild M, Tschuck P (2004) Estimating the decadal predictability of a coupled AOGCM. J Clim 17:4463–4472CrossRefGoogle Scholar
  48. Quenouille MH (1952) Associated measurements. Butterworths, p 242Google Scholar
  49. Rowell DP (1998) Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J Clim 11:109–120CrossRefGoogle Scholar
  50. Rowell DP, Folland CK, Maskell K, Ward MN (1995) Variability of summer rainfall over tropical North-Africa (1906–92) observations and modeling. Q J R Meteorol Soc 121:669–704Google Scholar
  51. Smith DM, Eade R, Dunstone NJ, Fereday D, Murphy JM, Pohlmann H, Scaife AA (2010) Skilful multi-year predictions of Atlantic hurricane frequency. Nat Geosci. doi: 10.1038/NGEO1004 Google Scholar
  52. Solomon A, et al. (2011) Distinguishing the roles of natural and anthropogenically forced decadal climate variability: implications for prediction US CLIVAR Decadal Predictability Working Group. Bull Am Meteor Soc 92(2). doi: 10.1175/2010BAMS29621
  53. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118CrossRefGoogle Scholar
  54. Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) The impact of global freshwater forcing on the thermohaline circulation: adjustment of North Atlantic convection sites in a CGCM. Clim Dyn 28:291–305CrossRefGoogle Scholar
  55. Swingedouw D, Mignot J, Braconnot P, Mosquet E, Kageyama M, Alkama R (2009) Impact of freshwater release in the North Atlantic under different climate conditions in an OAGCM. J Clim 22:6377–6403CrossRefGoogle Scholar
  56. Swingedouw D, Mignot J, Labetoule S, Guilyardi E, Madec G (2012) Initialisation and predictability of the AMOC over the last 50 years in a climate model. Clim Dyn (in revision)Google Scholar
  57. Taylor KE, Stouffer RJ, Meehl GE (2009) A summary of the CMIP5 experiment design. Lawrence Livermore National Laboratory Rep, p 32Google Scholar
  58. Teng H, Branstator G, Meehl GA (2011) Predictability of the Atlantic overturning circulation and associated surface patterns in two CCSM3 climate change ensemble experiments. J Clim 24:6054–6076CrossRefGoogle Scholar
  59. Ting M, Kushnir Y, Seager R, LIC (2009) Forced and internal twentieth century SST trends in the North Atlantic. J Climate 22:1469–1481CrossRefGoogle Scholar
  60. Valcke S (2006) OASIS3 user guide (prism_2-5), technical report TR/CMGC/06/73, PRISM Report No 2. CERFACS, Toulouse, p 60Google Scholar
  61. Vellinga M, Wu P (2004) Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J Clim 17:4498–4511CrossRefGoogle Scholar
  62. Xie SP, Okumura Y, Miyama T, Timmermann A (2008) Influences of Atlantic climate change on the tropical Pacific via the Central American Isthmus. J Clim 21:3914–3928CrossRefGoogle Scholar
  63. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • A. Persechino
    • 1
  • J. Mignot
    • 2
  • D. Swingedouw
    • 3
  • S. Labetoulle
    • 2
  • E. Guilyardi
    • 2
    • 4
  1. 1.School of Ocean and Earth ScienceUniversity of SouthamptonSouthamptonUK
  2. 2.Institut Pierre-Simon Laplace/LOCEANJussieu, ParisFrance
  3. 3.Institut Pierre-Simon Laplace/LSCEGif-sur-Yvette, CEA SaclayOrme des MerisiersFrance
  4. 4.NCAS-ClimateUniversity of ReadingReadingUK

Personalised recommendations