Climate Dynamics

, Volume 39, Issue 7–8, pp 1841–1857 | Cite as

Seasonal climate information preserved in West Antarctic ice core water isotopes: relationships to temperature, large-scale circulation, and sea ice

  • Marcel Küttel
  • Eric J. SteigEmail author
  • Qinghua Ding
  • Andrew J. Monaghan
  • David S. Battisti


As part of the United States’ contribution to the International Trans-Antarctic Scientific Expedition (ITASE), a network of precisely dated and highly resolved ice cores was retrieved from West Antarctica. The ITASE dataset provides a unique record of spatial and temporal variations of stable water isotopes (δ18O and δD) across West Antarctica. We demonstrate that, after accounting for water vapor diffusion, seasonal information can be successfully extracted from the ITASE cores. We use meteorological reanalysis, weather station, and sea ice data to assess the role of temperature, sea ice, and the state of the large-scale atmospheric circulation in controlling seasonal average water isotope variations in West Antarctica. The strongest relationships for all variables are found in the cores on and west of the West Antarctic Ice Sheet Divide and during austral fall. During this season positive isotope anomalies in the westernmost ITASE cores are strongly related to a positive pressure anomaly over West Antarctica, low sea ice concentrations in the Ross and Amundsen Seas, and above normal temperatures. Analyses suggest that this seasonally distinct climate signal is due to the pronounced meridional oriented circulation and its linkage to enhanced sea ice variations in the adjacent Southern Ocean during fall, both of which also influence local to regional temperatures.


Antarctica Ice cores Water isotopes Diffusion Sea ice Temperature Atmospheric circulation 



We thank University of Washington IsoLab staff and students A. Schauer, J. Flaherty, D. Schneider, P. Neff, K. Samek, R. Teel, and J. Bautista for help with the analyses. P. Mayewski and D. Dixon’s coordination of the U.S. ITASE fieldwork was invaluable. This work was supported by grants OPP-0837988 and 0963924 from the National Science Foundation. The National Center for Atmospheric Research is funded by the National Science Foundation.

Supplementary material

382_2012_1460_MOESM1_ESM.doc (2.4 mb)
Supplementary material 1 (DOC 2477 kb)


  1. Bretherton F (1964) Low frequency oscillations trapped near equator. Tellus 16:181–185CrossRefGoogle Scholar
  2. Bretherton C, Widmann M, Dymnikov V, Wallace J, Blade I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009CrossRefGoogle Scholar
  3. Bromwich D, Weaver C (1983) Latitudinal displacement from main moisture source controls δ18O of snow in coastal Antarctica. Nature 301:145–147CrossRefGoogle Scholar
  4. Bromwich D, Guo Z, Bai L, Chen Q (2004) Modeled Antarctic precipitation part I: spatial and temporal variability. J Clim 17:427–447CrossRefGoogle Scholar
  5. Cavalieri D, Parkinson C (1981) Large-scale variations in observed Antarctic sea ice extent and associated atmospheric circulation. Mon Wea Rev 109:2323–2336CrossRefGoogle Scholar
  6. Cavalieri D, Parkinson CL (2008) Antarctic sea ice variability and trends, 1979–2006. J Geophys Res-Oceans 113:C07004. doi: 10.1029/2007JC004564 CrossRefGoogle Scholar
  7. Chapman WL, Walsh JE (2007) A synthesis of Antarctic temperatures. J Clim 20:4096–4117CrossRefGoogle Scholar
  8. Comiso JC, Nishio F (2008) Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J Geophys Res Oceans 113:C02S07. doi: 10.1029/2007JC004257
  9. Cuffey K, Steig E (1998) Isotopic diffusion in polar firn: implications for interpretation of seasonal climate parameters in ice-core records, with emphasis on central Greenland. J Glaciol 44:273–284Google Scholar
  10. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  11. Delaygue G, Masson V, Jouzel J, Koster RD, Healy RJ (2000) The origin of Antarctic precipitation: a modelling approach. Tellus 52:19–36CrossRefGoogle Scholar
  12. Ding QH, Steig EJ, Battisti DS, Küttel M (2011) Recent West Antarctic warming caused by central tropical Pacific warming. Nature Geosci 4:398–403CrossRefGoogle Scholar
  13. Divine DV, Isaksson E, Kaczmarska M, Godtliebsen F, Oerter H, Schlosser E, Johnsen SJ, van den Broeke M, van de Wal RSW (2009) Tropical Pacific-high latitude south Atlantic teleconnections as seen in δ18O variability in Antarctic coastal ice cores. J Geophys Res Atmos 114:D11112. doi: 10.1029/2008JD010475 CrossRefGoogle Scholar
  14. Dixon D, Mayewski P, Kaspari S, Sneed S, Handley M (2004) A 200 year sub-annual record of sulfate in West Antarctica, from 16 ice cores. Ann Glaciol 39:545–556CrossRefGoogle Scholar
  15. Epstein S, Sharp R, Goddard I (1963) Oxygen-isotope ratios in Antarctic snow, firn, and ice. J Geol 71:698–720CrossRefGoogle Scholar
  16. Fegyveresi JG, Alley RB, Spencer MK, Fitzpatrick JJ, Steig EJ, White JWC, McConnell JR, Taylor KC (2011) Late Holocen climate evolution at the WAIS Divide site, West Antarctica: bubble number-density estimate. J Glaciol 57:629–638CrossRefGoogle Scholar
  17. Fisher DA, Reeh N, Clausen HB (1985) Stratigraphic noise in time series derived from ice cores. Ann Glaciol 7:76–83Google Scholar
  18. Genthon C, Krinner G, Sacchettini M (2003) Interannual Antarctic tropospheric circulation and precipitation variability. Clim Dyn 21:289–307CrossRefGoogle Scholar
  19. Genthon C, Kaspari S, Mayewski P (2005) Interannual variability of the surface mass balance of West Antarctica from ITASE cores and ERA40 reanalyses, 1958–2000. Clim Dyn 24:759–770CrossRefGoogle Scholar
  20. Gregory S, Noone D (2008) Variability in the teleconnection between the El Nino-Southern Oscillation and West Antarctic climate deduced from West Antarctic ice core isotope records. J Geophys Res Atmos 113:D17110. doi: 10.1029/2007JD009107 CrossRefGoogle Scholar
  21. Grootes P, Stuiver M (1986) Ross ice shelf oxygen isotopes and West Antarctic climate history. Quat Res 26:49–67CrossRefGoogle Scholar
  22. Hoffmann G, Werner M, Heimann M (1998) Water isotope module of the ECHAM atmospheric general circulation model: a study on timescales from days to several years. J Geophys Res Atmos 103:16871–16896CrossRefGoogle Scholar
  23. Hoskins B, Karoly D (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196CrossRefGoogle Scholar
  24. Johnsen SJ (1977) Stable isotope profiles compared with temperature profiles in firn and with historical temperature records. Proceedings of symposium on isotopes and impurities in snow and ice, Grenoble Aug–Sept 1975. Int Ass Hydrol Sci Publ 118:388–392Google Scholar
  25. Johnsen SJ, Clausen HB, Cuffey KM, Hoffmann G, Schwander J, Creyts T (2000) Diffusion of stable isotopes in polar firn and ice: the isotope effect in firn diffusion. In: Hondoh T (ed) Physics of ice core records. Hokkaido University Press, Sapporo, pp 121–140Google Scholar
  26. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  27. Kaspari S, Mayewski P, Dixon D, Spikes V, Sneed S, Handley M, Hamilton G (2004) Climate variability in West Antarctica derived from annual accumulation-rate records from ITASE firn/ice cores. Ann Glaciol 39:585–594CrossRefGoogle Scholar
  28. Kato K (1978) Factors controlling oxygen isotopic composition of fallen snow in Antarctica. Nature 272:46–48CrossRefGoogle Scholar
  29. Marshall GJ (2003) Trends in the southern annular mode from observations and reanalyses. J Clim 16:4134–4143CrossRefGoogle Scholar
  30. Masson-Delmotte V, Hou S, Ekaykin A, Jouzel J, Aristarain A, Bernardo RT, Bromwich D, Cattani O, Delmotte M, Falourd S, Frezzotti M, Gallee H, Genoni L, Isaksson E, Landais A, Helsen MM, Hoffmann G, Lopez J, Morgan V, Motoyama H, Noone D, Oerter H, Petit JR, Royer A, Uemura R, Schmidt GA, Schlosser E, Simoes JC, Steig EJ, Stenni B, Stievenard M, van den Broeke MR, van de Wal RSW, van de Berg WJ, Vimeux F, White JWC (2008) A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation, and isotopic modeling. J Clim 21:3359–3387CrossRefGoogle Scholar
  31. Mayewski PA, Frezzotti M, Bertler N, Van Ommen T, Hamilton G, Jacka TH, Welch B, Frey M, Qin D, Ren J, Simoes J, Fily M, Oerter H, Nishio F, Isaksson E, Mulvaney R, Holmund P, Lipenkov V, Goodwin I (2005) The international trans-antarctic scientific expedition (ITASE): an overview. Ann Glaciol 41:180–185CrossRefGoogle Scholar
  32. Mo KC, Ghil M (1987) Statistics and dynamics of persistent anomalies. J Atmos Sci 44:877–901CrossRefGoogle Scholar
  33. Monaghan AJ, Bromwich DH, Chapman W, Comiso JC (2008) Recent variability and trends of Antarctic near-surface temperature. J Geophys Res Atmos 113:D04105. doi: 10.1029/2007JD009094 CrossRefGoogle Scholar
  34. Morgan V, van Ommen T (1997) Seasonality in late-Holocene climate from ice-core records. Holocence 7:351–354CrossRefGoogle Scholar
  35. Nicolas JP, Bromwich DH (2011) Climate of West Antarctica and influence of marine air intrusions. J Clim 24:49–67CrossRefGoogle Scholar
  36. Noone D, Simmonds I (2002a) Associations between δ18O of water and climate parameters in a simulation of atmospheric circulation for 1979–1995. J Clim 15:3150–3169CrossRefGoogle Scholar
  37. Noone D, Simmonds I (2002b) Annular variations in moisture transport mechanisms and the abundance of δ18O in Antarctic snow. J Geophys Res Atmos 107:4742. doi: 10.1029/2002JD002262 CrossRefGoogle Scholar
  38. Noone D, Simmonds I (2004) Sea ice control of water isotope transport to Antarctica and implications for ice core interpretation. J Geophys Res Atmos 109:D07105. doi: 10.1029/2003JD004228 CrossRefGoogle Scholar
  39. Raphael MN (2007) The influence of atmospheric zonal wave three on Antarctic sea ice variability. J Geophys Res Atmos 112:D12112. doi: 10.1029/2006JD007852 CrossRefGoogle Scholar
  40. Rayner N, Parker D, Horton E, Folland C, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  41. Scheider DP, Steig EJ, Comiso JC (2004) Recent climate variability in Antarctica from satellite-derived temperature data. J Clim 17:1569–1583CrossRefGoogle Scholar
  42. Schneider DP, Noone DC (2007) Spatial covariance of water isotope records in a global network of ice cores spanning twentieth-century climate change. J Geophys Res Atmos 112:D18105. doi: 10.1029/2007JD008652 CrossRefGoogle Scholar
  43. Schneider DP, Steig EJ (2008) Ice cores record significant 1940 s Antarctic warmth related to tropical climate variability. Proc Natl Acad Sci 105:12154–12158CrossRefGoogle Scholar
  44. Schneider DP, Steig EJ, van Ommen T (2005) High-resolution ice-core stable-isotopic records from Antarctica: towards interannual climate reconstruction. Ann Glaciol 41:63–70CrossRefGoogle Scholar
  45. Schneider DP, Deser C, Okumura Y (2012) An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Clim Dyn 38:323–347. doi: 10.1007/s00382-010-0985-x CrossRefGoogle Scholar
  46. Shuman CA, Stearns CR (2001) Decadal-length composite inland West Antarctic temperature records. J Clim 14:1977–1988CrossRefGoogle Scholar
  47. Shuman CA, Stearns CR (2002) Decadal-length composite West Antarctic air temperature records. National Snow and Ice Data Center, Digital media, Boulder, COGoogle Scholar
  48. Sime LC, Wolff EW, Oliver KIC, Tindall JC (2009) Evidence for warmer interglacials in East Antarctic ice cores. Nature 462:342–345CrossRefGoogle Scholar
  49. Sodemann H, Stohl A (2009) Asymmetries in the moisture origin of Antarctic precipitation. Geophys Res Lett 36:L22803. doi: 10.1029/2009GL040242 CrossRefGoogle Scholar
  50. Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Nino-Southern Oscillation and Southern Annular Mode variability. J Geophys Res Oceans 113:C03S90. doi: 10.1029/2007JC004269
  51. Steig EJ (2009) US ITASE Stable isotope data, Antarctica. National Snow and Ice Data Center. DIF: NSIDC-0425Google Scholar
  52. Steig EJ, Mayewski PA, Dixon DA, Kaspari SD, Frey MM, Schneider DP, Arcone SA, Hamilton GS, Spikes VB, Albert M, Meese D, Gow AJ, Shuman CA, White JWC, Sneed S, Flaherty J, Wumkes M (2005) High-resolution ice cores from US ITASE (West Antarctica): development and validation of chronologies and determination of precision and accuracy. Ann Glaciol 41:77–84CrossRefGoogle Scholar
  53. Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT (2009) Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457:459–462CrossRefGoogle Scholar
  54. Thomas ER, Bracegirdle TJ (2009) Improving ice core interpretation using in situ and reanalysis data. J Geophys Res Atmos 114:D20116. doi: 10.1029/2009JD012263 CrossRefGoogle Scholar
  55. Torrence C, Compo G (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78CrossRefGoogle Scholar
  56. Turner J, Comiso JC, Marshall GJ, Lachlan-Cope TA, Bracegirdle T, Maksym T, Meredith MP, Wang Z, Orr A (2009) Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys Res Lett 36:L08502. doi: 10.1029/2009GL037524 CrossRefGoogle Scholar
  57. Uppala S, Kallberg P, Simmons A, Andrae U, Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins B, Isaksen L, Janssen P, Jenne R, McNally A, Mahfouf J, Morcrette J, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Quart J Roy Meteor Soc 131:2961–3012CrossRefGoogle Scholar
  58. Vinther BM, Jones PD, Briffa KR, Clausen HB, Andersen KK, Dahl-Jensen D, Johnsen SJ (2010) Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat Sci Rev 29:522–538CrossRefGoogle Scholar
  59. White WB, Peterson RG (1996) An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature 380:699–702CrossRefGoogle Scholar
  60. Yuan X, Li C (2008) Climate modes in southern high latitudes and their impacts on Antarctic sea ice. J Geophys Res Oceans 113:C06S91. doi: 10.1029/2006JC004067
  61. Yuan X, Martinson D (2001) The Antarctic dipole and its predictability. Geophys Res Lett 28:3609–3612CrossRefGoogle Scholar
  62. Zwally HJ, Comiso JC, Parkinson CL, Cavalieri DJ, Gloersen P (2002) Variability of Antarctic sea ice 1979–1998. J Geophys Res 107:3041. doi: 10.1029/2000JC000733 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Marcel Küttel
    • 1
  • Eric J. Steig
    • 1
    Email author
  • Qinghua Ding
    • 1
  • Andrew J. Monaghan
    • 2
  • David S. Battisti
    • 3
  1. 1.Department of Earth and Space Sciences and Quaternary Research CenterUniversity of WashingtonSeattleUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.Department of Atmospheric SciencesUniversity of WashingtonSeattleUSA

Personalised recommendations