Climate Dynamics

, Volume 40, Issue 7–8, pp 2049–2071 | Cite as

TropFlux wind stresses over the tropical oceans: evaluation and comparison with other products

  • B. Praveen KumarEmail author
  • J. Vialard
  • M. Lengaigne
  • V. S. N. Murty
  • M. J. McPhaden
  • M. F. Cronin
  • F. Pinsard
  • K. Gopala Reddy


In this paper, we present TropFlux wind stresses and evaluate them against observations along with other widely used daily air-sea momentum flux products (NCEP, NCEP2, ERA-I and QuikSCAT). TropFlux wind stresses are computed from the COARE v3.0 algorithm, using bias and amplitude corrected ERA-I input data and an additional climatological gustiness correction. The wind stress products are evaluated against dependent data from the TAO/TRITON, PIRATA and RAMA arrays and independent data from the OceanSITES mooring networks. Wind stress products are more consistent amongst each other than surface heat fluxes, suggesting that 10 m-winds are better constrained than near-surface thermodynamical parameters (2 m-humidity and temperature) and surface downward radiative fluxes. QuikSCAT overestimates wind stresses away from the equator, while NCEP and NCEP2 underestimate wind stresses, especially in the equatorial Pacific. QuikSCAT wind stress quality is strongly affected by rain under the Inter Tropical Convergence Zones. ERA-I and TropFlux display the best agreement with in situ data, with correlations >0.93 and rms-differences <0.012 Nm−2. TropFlux wind stresses exhibit a small, but consistent improvement (at all timescales and most locations) over ERA-I, with an overall 17 % reduction in root mean square error. ERA-I and TropFlux agree best with long-term mean zonal wind stress observations at equatorial latitudes. All products tend to underestimate the zonal wind stress seasonal cycle by ~20 % in the western and central equatorial Pacific. TropFlux and ERA-I equatorial zonal wind stresses have clearly the best phase agreement with mooring data at intraseasonal and interannual timescales (correlation of ~0.9 versus ~0.8 at best for any other product), with TropFlux correcting the ~13 % underestimation of ERA-I variance at both timescales. For example, TropFlux was the best at reproducing westerly wind bursts that played a key role in the 1997–1998 El Niño onset. Hence, we recommend the use of TropFlux for studies of equatorial ocean dynamics.


TropFlux Tropics Air-sea momentum fluxes Wind stress products validation 



The development of TropFlux product is the result of a joint research collaboration between National Institute of Oceanography (CSIR/NIO, Goa, India), Institut de Recherche pour le Développement (IRD, France), Institute Pierre et Simon Laplace (IPSL, Paris, France) and Pacific Marine Environmental Laboratory (NOAA/PMEL, Seattle, Washington). BPK and VSNM thank Director, National Institute of Oceanography, India, for his keen interest in this study. The lead author is supported by a Senior Research Fellowship (SRF) from Council of Scientific and Industrial Research (CSIR, Govt. of India) and a 1-year research grant from Institut de Recherche pour le Développement (IRD, France) and did part of this work whilst at Laboratoire d’Océanographie Expérimentation et Approches Numériques (LOCEAN, Paris). JV and ML are funded by Institut de Recherche pour le Développement (IRD) and did this work while visiting National Institute of Oceanography (NIO, India). MJM is supported by NOAA. NOAA’s Climate Program Office provided support for the calculation of the TPR fluxes. We sincerely thank the providers of NCEP and NCEP2 re-analyses data (NOAA/OAR/ESRL PSD, Boulder, Colorado, USA), ERA-Interim (European Centre for Medium Range Weather Forecasting, Reading, United Kingdom), QuikSCAT winds (CERSAT-IFREMER, Brest, France). The mooring data were made freely available by the TAO-PIRATA-RAMA (PMEL-NOAA, Seattle, USA) and OceanSITES international projects, and the national programs that contribute to them. Discussions with A. Beljars (ECMWF) on drag coefficient provided useful inputs. A. Bentamy (IFREMER, France) and W. Ebisuzaki (NOAA, USA) provided useful discussions on wind-wave corrections. Critical comments from two anonymous reviewers greatly helped to improve an earlier version of the manuscript and we acknowledge that. This is NIO contribution number 5204 and PMEL contribution number 3783.


  1. Annamalai H, Murtugudde R, Potemra J, Xie SP, Liu P, Wang B (2003) Coupled dynamics over the Indian Ocean: spring initiation of the zonal mode. Deep Sea Res II 50:2305–2330CrossRefGoogle Scholar
  2. Bentamy A, Quilfen Y, Gohin F, Grima N, Lenaour M, Servain J (1996) Determination and validation of average wind fields from ERS-1 scatterometer measurements. Glob Atmos Ocean Syst 4:1–29Google Scholar
  3. Bentamy A, Katsaros KB, Alberto M, Drennan WM, Forde EB (2002) Daily surface wind fields produced by merged satellite data. Am Geophys Union Geophys Monogr Ser 127:343–349CrossRefGoogle Scholar
  4. Bentamy A, Katsaros KB, Mestas-Nuñez AM, Drennan WM, Forde EB, Roquet H (2003) Satellite estimates of wind speed and latent heat flux over the global oceans. J Climate 16:637–656CrossRefGoogle Scholar
  5. Bentamy A, Grodsky SA, Carton JA, Croizé-Fillon D, Chapron B (2012) Matching ASCAT and QuikSCAT winds. J Geophys Res 117:C02011. doi: 10.1029/2011JC007479 CrossRefGoogle Scholar
  6. Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18:820–829CrossRefGoogle Scholar
  7. Boulanger J-P, Menkes C (1999) Long equatorial wave reflection in the Pacific Ocean from TOPEX/POSEIDON data during the 1992–1998 period. Clim Dyn 15:205–225CrossRefGoogle Scholar
  8. Bourlès B, Lumpkin R, McPhaden MJ, Hernandez F, Nobre P, Campos E, Yu L, Planton S, Busalacchi AJ, Moura AD, Servaom J, Trotte J (2008) The PIRATA program: history, accomplishments and future directions. Bull Am Meteorol Soc 89:1111–1125CrossRefGoogle Scholar
  9. Brink NJ, Moyer KA, Trask RP, Weller RA (1995) The subduction experiment: mooring field program and data summary. Woods Hole Oceanographic Institution. WHOI-95-08Google Scholar
  10. Brodeau L, Barnier B, Penduff T, Treguier AM, Gulev S (2010) An ERA-40 based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104. doi: 10.1016/j.ocemod.2009.10.005 CrossRefGoogle Scholar
  11. Bruke MA, Fairall CW, Zeng X, Eymard L, Curry JA (2003) Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J Clim 16(4):619–635CrossRefGoogle Scholar
  12. Bunker AF (1976) Computations of surface energy flux and annual air-sea interaction cycles of the north Atlantic. Mon Weather Rev 104:1122–1140CrossRefGoogle Scholar
  13. Cassou C (2008) Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature 455:523–527CrossRefGoogle Scholar
  14. Chelton DB, Freilich MH (2005) Scatterometer based assessment of 10-m wind analyses from the operational ECMWF and NCEP numerical weather prediction models. Mon Weather Rev 133:409–429CrossRefGoogle Scholar
  15. Chelton DB, Freilich MH, Sienkiewicz JM, Von Ahn JM (2006) On the use of QuikSCAT scatterometer measurements of surface winds for marine weather prediction. Mon Weather Rev 134:2055–2071CrossRefGoogle Scholar
  16. Colbo K, Weller R (2007) The variability and heat budget of the upper ocean under the Chile-Peru stratus. J Mar Res 65:607–637CrossRefGoogle Scholar
  17. Cravatte S, Picaut J, Eldin G (2003) Second and first baroclinic Kelvin modes in the equatorial Pacific at intraseasonal timescales. J Geophys Res 108:3266. doi: 10.1029/2002JC001511 CrossRefGoogle Scholar
  18. Cravatte S, Madec G, Izumo T, Menkes C, Bozec A (2007) Progress in the 3-D circulation of the eastern equatorial Pacific in a climate ocean model. Ocean Model 17:28–48CrossRefGoogle Scholar
  19. Cronin MF, Fairall C, McPhaden MJ (2006) An assessment of buoy-derived and numerical weather prediction surface heat fluxes in the tropical Pacific. J Geophys Res 111:C06038. doi: 10.1029/2005JC003324 CrossRefGoogle Scholar
  20. da Silva AM, Young CC, Levitus S (1994) Algorithms and procedures. Vol 1,. Atlas of surface marine data. NOAA Atlas NESDIS 6Google Scholar
  21. Dawe JT, Thompson L (2006) Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean. Geophys Res Lett 33:L09604. doi: 10.1029/2006GL025784 CrossRefGoogle Scholar
  22. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(553):597. doi: 10.1002/qj.828 Google Scholar
  23. Drushka K, Sprintall J, Gille ST, Wijffels W (2011) In situ observations of Madden-Julian Oscillation mixed layer dynamics in the Indian and Western Pacific Oceans. J Clim. doi: 10.1175/JCLI-D-11-00203.1 Google Scholar
  24. Duvel J-P, Vialard J (2007) Indo-Pacific sea surface temperature perturbations associated with intraseasonal oscillations of the tropical convection. J Clim 20:3056–3082CrossRefGoogle Scholar
  25. Fairall CW, Bradley EF, Rogers DP, Edson JB, Young GS (1996) Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled ocean-atmosphere response experiment. J Geophys Res 101:3747–3764CrossRefGoogle Scholar
  26. Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization on air-sea fluxes: updates and verification for the COARE algorithm. J Climate 16:571–591CrossRefGoogle Scholar
  27. Freitag HP, McCarty ME, Nosse C, Lukas R, McPhaden MJ, Cronin MF (1999) COARE Seacat data: calibrations and quality control procedures. NOAA Tech. Memo. ERL PMEL-115Google Scholar
  28. Freitag HP, O’Haleck M, Thomas GC, McPhaden MJ (2001) Calibration procedures and instrumental accuracies for ATLAS wind measurements. NOAA. Tech. Memo. OAR PMEL-119, NOAA/Pacific Marine Environmental Laboratory, Seattle, WashingtonGoogle Scholar
  29. Gille ST (2005) Statistical characterization of zonal and meridional ocean wind stress. J Atmos Ocean Technol 22:1353–1372CrossRefGoogle Scholar
  30. Hackert EC, Busalacchi AJ, Murtugudde R (2001) A wind comparison study using an ocean general circulation model for the 1997–98 El Niño. J Geophys Res 106:2345–2362CrossRefGoogle Scholar
  31. Han W, Lawrence DM, Webster PJ (2001) Dynamical response of equatorial Indian Ocean to intraseasonal winds: zonal flow. Geophys Res Lett 28:4215–4218CrossRefGoogle Scholar
  32. Han W, Meehl GA, Rajagopalan B et al (2010) Patterns of Indian Ocean sea-level change in a warming climate. Nat Geo sci 3:546–550. doi: 10.1038/ngeo901 CrossRefGoogle Scholar
  33. Han W, McCreary JP, Masumoto Y, Vialard J, Duncan B (2011) Basin modes in the equatorial Indian Ocean. J Phys Oceanogr 41:1252–1270CrossRefGoogle Scholar
  34. Hellerman S, Rosenstein M (1983) Normal monthly wind stress over the World Ocean with error estimates. J Phys Oceanogr 13:1093–1104CrossRefGoogle Scholar
  35. Huddleston JN, Stiles BW (2000) Multi dimensional histogram (MUDH) rain flag product description, Version 2.1. Jet Propulsion Laboratory, PasadenaGoogle Scholar
  36. Jayakumar A, Vialard J, Lengaigne M, Gnanaseelan C, McCreary JP, Praveen Kumar B (2011) Processes controlling the surface temperature signature of the Madden-Julian Oscillation in the thermocline ridge of the Indian Ocean. Clim Dyn (online). doi: 10.1007/s00382-010-0953-5
  37. Jiang C, Cronin MF, Kelly KA, Thompson L (2005) Evaluation of a hybrid satellite- and NWP-based turbulent heat flux product using Tropical Atmosphere-Ocean (TAO) buoys. J Geophys Res 110(C9):C09007. doi: 10.1029/2004JC002824 CrossRefGoogle Scholar
  38. Jiang C-L, Thompson L, Kelly KA (2008) Equatorial influence of QuikSCAT winds in an isopycnal ocean model compared to NCEP2 winds. Ocean Model 24. doi: 10.1016/j.ocemod.2008.05.003
  39. Jiang C, Thompson L, Kelly KA, Cronin MF (2009) The roles of intraseasonal Kelvin waves and tropical instability waves in SST variability along the equatorial Pacific in an isopycnal ocean model. J Clim 22. doi: 10.1175/2009JCLI2767.1
  40. Josey S, Kent E, Taylor P (2002) Wind stress forcing of the ocean in the SOC climatology: comparisons with the NCEP-NCAR, ECMWF, UWM/COADS, and Hellerman and Rosenstein datasets. J Phys Oceanogr 32:1993–2019CrossRefGoogle Scholar
  41. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–470CrossRefGoogle Scholar
  42. Kanamitsu M, Ebisuzaki W, Woolen J, Potter J, Fiorino M (2002) NCEP/DOE AMIP-II Reanalysis (R-2). Bull Am Meteor Soc 83:1631–1643CrossRefGoogle Scholar
  43. Kara AB, Metzger EJ, Bourrassa MA (2007) Ocean current and wave effects on wind stress drag coefficient over the global ocean. Geophys Res Lett 34:L01604. doi: 10.1029/2006GL027849 CrossRefGoogle Scholar
  44. Kessler WS, McPhaden MJ, Weickmann KM (1995) Forcing of intraseasonal Kelvin Waves in the equatorial Pacific. J Geophys Res 100:10613–10631CrossRefGoogle Scholar
  45. Kessler WS, Johnson GC, Moore DW (2003) Sverdrup and nonlinear dynamics of the pacific equatorial currents. J Phys Oceanogr 33:994–1008CrossRefGoogle Scholar
  46. Kochanski A, Koracin D, Dorman CE (2006) Comparison of wind-stress algorithms and their influence on wind-stress curl using buoy measurements over the shelf off Bodega Bay, California. Deep-Sea Res II 53:2865–2886CrossRefGoogle Scholar
  47. Lake BJ, Norr SM, Freitag HP, McPhaden MJ (2003) Calibration procedures and intrumental accuracy estimates of ATLAS air temperature and relative humidity measurements. NOAA Tech Memo. OAR PMEL-123, NOAA/Pacific Marine Environmental Laboratory, SeattleGoogle Scholar
  48. Large WG, Pond S (1981) Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr 11:324–336CrossRefGoogle Scholar
  49. Le Blanc J-L, Boulanger J-P (2001) Propagation and reflection of long equatorial waves in the Indian Ocean from TOPEX/POSEIDON data during the 1993–1998 period. Clim Dyn 17:547–557CrossRefGoogle Scholar
  50. Lee T, McPhaden MJ (2008) Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys Res Lett 35:L01605. doi: 10.1029/2007GL032419 CrossRefGoogle Scholar
  51. Lengaigne M, Boulanger J-P, Menkes C, Masson S, Madec G, Delecluse P (2002) Ocean response to the March 1997 westerly wind event. J Geophys Res 107:8015. doi: 10.1029/2001JC000841 CrossRefGoogle Scholar
  52. Lengaigne M, Boulanger J-P, Menkes C, Madec G, Delecluse P, Guilyardi E, Slingo J (2003) The March 1997 westerly wind event and the onset of the 1997/98 El Niño: understanding the role of the atmospheric response. J Clim 16:3330–3343CrossRefGoogle Scholar
  53. Lengaigne M, Boulanger JP, Delecluse P, Menkes C, Slingo J (2004) Westerly Wind Events and their influence on coupled ocean-atmosphere system: a review. Earth’s climate: the ocean–atmosphere interaction. Am Geophys Union Geophys Monogr 147:49–69CrossRefGoogle Scholar
  54. Lengaigne M, Boulanger J-P, Menkes C, Spencer H (2006) Influence of the seasonal cycle on the termination of El Niño events in a coupled general circulation model. J Clim 19:1850–1868. doi: 10.1175/JCLI3706.1 CrossRefGoogle Scholar
  55. McCreary JP (1981a) A linear stratified ocean model of the coastal undercurrent. Philos Trans R Soc Lond 298:603–635CrossRefGoogle Scholar
  56. McCreary JP (1981b) A linear stratified ocean model of the coastal undercurrent. Phil Trans R Soc Lond 298:603–635CrossRefGoogle Scholar
  57. McPhaden MJ (1999) Genesis and evolution of the 1997–98 El Niño. Science 283:950–954CrossRefGoogle Scholar
  58. McPhaden MJ (2004) Evolution of the 2002/03 El Niño. Bull Am Meteor Soc 85:677–695CrossRefGoogle Scholar
  59. McPhaden MJ, Busalacchi AJ, Cheney R, Donguy JR, Gage KS, Halpern D, Ji M, Julian P, Mayers G, Mitchum GT, Niiler PP, Picaut J, Reynolds RW, Smith N, Takeuchi K (1998) The tropical ocean-global atmosphere (TOGA) observing system: a decade of progress. J Geophys Res 103:14169–14240CrossRefGoogle Scholar
  60. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in Earth science. Science 314:1740–1745CrossRefGoogle Scholar
  61. McPhaden MJ, Meyers G, Ando K, Masumoto Y, Murty VSN, Ravichandran M, Syamsudin F, Vialard J, Yu W, Wu L (2009) RAMA: research moored array for african-asian-australian monsoon analysis and prediction. Bull Am Meteor Soc 90:459–480CrossRefGoogle Scholar
  62. McPhaden MJ, Ando K, Bourlès B, Freitag HP, Lumpkin R, Masumoto Y, Murty VSN, Nobre P, Ravichandran M, Vialard J, Vousden D, Yu W (2010) The global tropical moored buoy array. In: Hall J, Harrison DE, Stammer D (eds), Proceedings of the “OceanObs’09: sustained ocean observations and information for society” Conference (Vol 2), Venice, 21–25 September 2009, ESA Publication WPP-306Google Scholar
  63. Medavaya M, Waliser DE, Weller RA, McPhaden MJ (2002) Assessing ocean buoy shortwave shortwave observations using clear-sky model calculations. J Geophys Res 107(C2):3014. doi: 10.1029/2000JC000558 CrossRefGoogle Scholar
  64. Meissner T, Smith D, Wentz F (2001) A 10 year intercomparison between collocated Special Sensor Microwave Imager oceanic surface wind speed retrievals and global analyses. J Geophys Res 106:11731–11742CrossRefGoogle Scholar
  65. Milliff RF, Morzel J, Chelton D, Freilich MH (2004) Wind stress curl and wind stress divergence biases from rain effects on QUIKSCAT surface wind retrievals. J Atmos Ocean Technol 21:1216–1231CrossRefGoogle Scholar
  66. Nagura M, McPhaden MJ (2010a) Wyrtki jet dynamics: seasonal variability. J Geophys Res 115:C07009. doi: 10.1029/2009JC005922 CrossRefGoogle Scholar
  67. Nagura M, McPhaden MJ (2010b) Dynamics of zonal current variations associated with the Indian Ocean dipole. J Geophys Res 115:C11026. doi: 10.1029/2010JC006423 CrossRefGoogle Scholar
  68. Nagura M, McPhaden MJ (2012) The dynamics of wind-driven intraseasonal variability in the equatorial Indian Ocean. J Geophys Res 115:C07009. doi: 10.1029/2011JC007405 CrossRefGoogle Scholar
  69. Nidheesh AG, Lengaigne M, Unnikrishnan AS, Vialard J (2012) Decadal sea level variability in the tropical Indo-Pacific—results from an ocean model and the CMIP3 databse. Clim Dyn (in revision)Google Scholar
  70. Oost WA, Komen GJ, Jacobs CMJ, Van Oort C (2002) New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Bound Layer Meteor 103:409–438CrossRefGoogle Scholar
  71. Payne RE, Huang K, Weller RA, Freitag HP, Cronin MF, McPhaden MJ, Meinig C, Kuroda Y, Ushijima N, Reynolds RM (2002) A comparison of buoy meteorological systems. WHOI Technical Report WHOI-2002-10. Woods Hole Oceanographic InstitutionGoogle Scholar
  72. Pegion PJ, Bourassa MA, Legler DM, O’Brien JJ (2000) Objectively derived daily “winds” from satellite scatterometer data. Mon Weather Rev 128:3150–3168CrossRefGoogle Scholar
  73. Plueddemann AJ, Weller RA, Lukas R, Lord J, Bouchard PR, Walsh MA (2006) WHOI Hawaii ocean timeseries station (WHOTS): WJOTS-2 Mooring turnaround cruise report. WHOI. Technical Report WHOI-2006-08, Woods Hole Oceanographic InstitutionGoogle Scholar
  74. Praveen Kumar B, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ (2012) TropFlux: air-sea fluxes for the global tropical oceans—description and evaluation. Clim Dyn 38:1521–1543. doi: 10.1007/s00382-011-1115-0 CrossRefGoogle Scholar
  75. Rienecker MM, Atlas R, Schubert SD, Willett CS (1996) A comparison of surface wind products over North Pacific Ocean. J Geophys Res 101:1011–1023CrossRefGoogle Scholar
  76. Risien CM, Chelton DB (2008) A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J Phys Oceanogr 38:2379–2413CrossRefGoogle Scholar
  77. Rodrigues RR, Rothstein LM, Wimbush M (2007) Seasonal variability of the south equatorial current bifurcation in the Atlantic Ocean: a numerical study. J Phys Oceanogr 37:16–30CrossRefGoogle Scholar
  78. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  79. Satheesan K, Sarkar A, Parekh A, Kumar MR, Kuroda Y (2007) Comparison of wind data from QuikSCAT and buoys in the Indian Ocean. Int J Remote Sens 28:2375–2382CrossRefGoogle Scholar
  80. Schlax MG, Chelton DB, Freilich MH (2001) Sampling errors in wind fields constructed from single and tandem scatterometer datasets. J Atmos Ocean Technol 18:1014–1036CrossRefGoogle Scholar
  81. Schott FA, McCreary JP Jr (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51:1–123CrossRefGoogle Scholar
  82. Sengupta D, Senan R, Goswami BN, Vialard J (2007) Intraseasonal variability of equatorial Indian Ocean zonal currents. J Clim 20:3036–3055CrossRefGoogle Scholar
  83. Serra YL, A’Hearn P, Freitag HP, McPhaden MJ (2001) ATLAS self-siphoning rain gauge error estimates. J Atmos Ocean Technol 18:1989–2002CrossRefGoogle Scholar
  84. Smith SD (1988) Coefficients for sea surface wind stress, heat flux and wind profiles as a function ow wind-speed and temperature. J Geophys Res 93:15467–15472CrossRefGoogle Scholar
  85. Tokinaga H, Xie S-P (2011) Wave and Anemometer-based Sea-surface Wind (WASWind) for climate change analysis. J Climate 24:267–285CrossRefGoogle Scholar
  86. Vialard J, Menkes C, Boulanger J-P, Delecluse P, Guilyardi E, McPhaden MJ, Madec G (2001) Oceanic mechanisms driving the SST during the 1997–1998 El Niño. J Phys Oceanogr 31:1649–1675CrossRefGoogle Scholar
  87. Vialard J, Shenoi SSC, McCreary JP, Shankar D, Durand F, Fernando V, Shetye SR (2009) Intraseasonal response of Northern Indian Ocean coastal waveguide to the Madden-Julian Oscillation. Geophys Res Lett 36:L14605. doi: 10.1029/2008GL037010 CrossRefGoogle Scholar
  88. Vialard J, Jayakumar A, Gnanaseelan C, Lengaigne M, Sengupta D (2012) Processes of intraseasonal sea surface temperature variability in the Northern Indian Ocean during boreal summer. Clim Dyn 38:1901–1916CrossRefGoogle Scholar
  89. Wang C, Picaut J (2004) Understanding ENSO physics—a review. In: Wang C, Xie S-P, Carton JA (eds) Earth’s climate: the ocean atmosphere interaction. AGU, Washington, pp 21–48CrossRefGoogle Scholar
  90. Webster P, Lukas R (1992) TOGA-COARE the coupled ocean-atmosphere response experiment. Bull Am Meteor Soc 73:1377–1416CrossRefGoogle Scholar
  91. Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401:356–360CrossRefGoogle Scholar
  92. Weller RA, Baumgartner MF, Josey SA, Fischer AS, Kindle J (1998) Atmospheric forcing in the Arabian Sea during 1994–1995: observations and comparisons with climatology and models. Deep-Sea Res 45:1961–1999CrossRefGoogle Scholar
  93. Wheeler M, Hendon HH (2004) An All-Season Real-time Multivariate MJO index: development of the index for monitoring and prediction in Australia. Mon Weather Rev 132:1917–1932CrossRefGoogle Scholar
  94. Whelan SP, Weller RA, Lukas R, Bradley F, Lord J, Smith J, Bahr F, Lethaby P, Snyder J (2007) WHOTS-3 Mooring turnaround cruise report. WHOI. Technical Report, WHOI-2007-03, Woods Hole Oceanographic InstitutionGoogle Scholar
  95. Wyrtki K (1973) An equatorial jet in the Indian Ocean. Science 181:262–264CrossRefGoogle Scholar
  96. Xie S-P, Carton JA (2004) Tropical Atlantic variability: patterns, mechanisms, and impacts. In: Wang C, Xie S-P, Carton JA (eds) Earth’s climate: the ocean-atmosphere interaction, Geophys Monogr Ser, vol 147. AGU, Washington, pp 121–142CrossRefGoogle Scholar
  97. Yelland M, Taylor PK (1996) Wind stress measurements from the open ocean. J Phys Oceanogr 26:541–558CrossRefGoogle Scholar
  98. Yu L, Jin X, Weller RA (2007) Annual, seasonal, and interannual variability of air sea heat fluxes in the Indian Ocean. J Clim 20:3190–3209CrossRefGoogle Scholar
  99. Zhang C (2005) Madden-Julian oscillation. Rev Geophys 43:RG2003. doi: 10.1029/2004RG000158 CrossRefGoogle Scholar
  100. Zhang X, McPhaden MJ (2006) Wind stress variations and interannual sea surface temperature anomalies in the eastern equatorial Pacific. J Clim 19:226–241CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • B. Praveen Kumar
    • 1
    Email author
  • J. Vialard
    • 2
  • M. Lengaigne
    • 1
    • 2
  • V. S. N. Murty
    • 3
  • M. J. McPhaden
    • 4
  • M. F. Cronin
    • 4
  • F. Pinsard
    • 2
  • K. Gopala Reddy
    • 5
  1. 1.Physical Oceanography Division, National Institute of OceanographyCouncil of Scientific and Industrial ResearchDona PaulaIndia
  2. 2.Laboratoire d’Océanographie Expérimentation et Approches NumériquesCNRS, UPMC, IRDParisFrance
  3. 3.National Institute of Oceanography, Regional Centre, Council of Scientific and Industrial ResearchVishakhapatnamIndia
  4. 4.NOAA/Pacific Marine Environmental LaboratorySeattleUSA
  5. 5.Department of Meteorology and Oceanography, Centre for Bay of Bengal StudiesAndhra UniversityVishakhapatnamIndia

Personalised recommendations