Climate Dynamics

, Volume 41, Issue 1, pp 3–19 | Cite as

Late Holocene Asian summer monsoon dynamics from small but complex networks of paleoclimate data

  • Kira Rehfeld
  • Norbert Marwan
  • Sebastian F. M. Breitenbach
  • Jürgen Kurths


Internal variability of the Asian monsoon system and the relationship amongst its sub-systems, the Indian and East Asian Summer Monsoon, are not sufficiently understood to predict its responses to a future warming climate. Past environmental variability is recorded in Palaeoclimate proxy data. In the Asian monsoon domain many records are available, e.g. from stalagmites, tree-rings or sediment cores. They have to be interpreted in the context of each other, but visual comparison is insufficient. Heterogeneous growth rates lead to uneven temporal sampling. Therefore, computing correlation values is difficult because standard methods require co-eval observation times, and sampling-dependent bias effects may occur. Climate networks are tools to extract system dynamics from observed time series, and to investigate Earth system dynamics in a spatio-temporal context. We establish paleoclimate networks to compare paleoclimate records within a spatially extended domain. Our approach is based on adapted linear and nonlinear association measures that are more efficient than interpolation-based measures in the presence of inter-sampling time variability. Based on this new method we investigate Asian Summer Monsoon dynamics for the late Holocene, focusing on the Medieval Warm Period (MWP), the Little Ice Age (LIA), and the recent period of warming in East Asia. We find a strong Indian Summer Monsoon (ISM) influence on the East Asian Summer Monsoon during the MWP. During the cold LIA, the ISM circulation was weaker and did not extend as far east. The most recent period of warming yields network results that could indicate a currently ongoing transition phase towards a stronger ISM penetration into China. We find that we could not have come to these conclusions using visual comparison of the data and conclude that paleoclimate networks have great potential to study the variability of climate subsystems in space and time.


Asian summer monsoon Complex networks Irregular sampling Little ice age Medieval warm period 



This research was financially supported by the the German Federal Ministry of Education and Research (BMBF project PROGRESS, 03IS2191B), the German Science Foundation (DFG research group FOR 1380 “Himalaya: Modern and Past Climates (HIMPAC))”, the DFG graduate school GRK 1364 “Shaping Earth’s Surface in a Variable Environment”) and the Schweizer National Fond (SNF Sinergia grant CRSI22 132646/1). The authors would like to thank M. Yadava, R. Ramesh and H. Borgaonkar for providing data from India as well as G. Helle and M. Freund for helpful discussions about tree-ring data. Software to analyze irregularly sampled time series using the methods in this paper can be found on


  1. Anchukaitis KJ, Evans MN, Kaplan A, Vaganov EA, Hughes MK, Grissino-Mayer HD, Cane MA (2006) Forward modeling of regional scale tree-ring patterns in the southeastern United States and the recent influence of summer drought. Geophys Res Lett 33(4):2–5. doi: 10.1029/2005GL025050 CrossRefGoogle Scholar
  2. Babu P, Stoica P (2010) Spectral analysis of nonuniformly sampled data—a review. Digit Signal Process 20(2):359–378. doi: 10.1016/j.dsp.2009.06.019 CrossRefGoogle Scholar
  3. Berkelhammer M, Sinha A, Mudelsee M, Cheng H, Edwards RL, Cannariato K (2010) Persistent multidecadal power of the Indian Summer Monsoon. Earth Planet Sci Lett 290(1–2):166–172. doi: 10.1016/j.epsl.2009.12.017 CrossRefGoogle Scholar
  4. Borgaonkar H, Pant G, Rupa Kumar K (1994) Dendroclimatic reconstruction of summer precipitation at Srinagar, Kashmir, India, since the late-eighteenth century. The Holocene 4(3):299–306. doi: 10.1177/095968369400400309 CrossRefGoogle Scholar
  5. Borgaonkar H, Sikder A, Ram S, Pant G (2010) El Niño and related monsoon drought signals in 523-year-long ring width records of teak (Tectona grandis L.F.) trees from south India. Palaeogeogr Palaeoclimatol Palaeoecol 285(1–2):74–84. doi: 10.1016/j.palaeo.2009.10.026 CrossRefGoogle Scholar
  6. Breitenbach SFM, Adkins JF, Meyer H, Marwan N, Kumar KK, Haug GH (2010) Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth Planet Sci Lett 292(1–2):212–220. doi: 10.1016/j.epsl.2010.01.038 CrossRefGoogle Scholar
  7. Breitenbach SFM, Rehfeld K, Goswami B, Baldini JUL, Ridley HE, Kennett D, Prufer K, Aquino VV, Asmerom Y, Polyak VJ, Cheng H, Kurths J, Marwan N (2012) Constructing proxy-record age models (Copra). Clim Past Discuss 8:1–40. doi: 10.5194/cpd-8-1-2012 CrossRefGoogle Scholar
  8. Buckley BM, Anchukaitis KJ, Penny D, Fletcher R, Cook ER, Sano M, Nam LC, Wichienkeeo A, Minh TT, Hong TM (2010) Climate as a contributing factor in the demise of Angkor, Cambodia. Proc Natl Acad Sci USA 107(15):6748–6752. doi: 10.1073/pnas.0910827107 Google Scholar
  9. Cai Y, Tan L, Cheng H, An Z, Edwards RL, Kelly MJ, Kong X, Wang X (2010) The variation of summer monsoon precipitation in central China since the last deglaciation. Earth Planet Sci Lett 291(1–4):21–31. doi: 10.1016/j.epsl.2009.12.039 CrossRefGoogle Scholar
  10. Chatfield C (2004) The analysis of time series: an introduction, 6th edn. CRC Press, Florida, USAGoogle Scholar
  11. Cheng H, Zhang PZ, Spötl C, Edwards RL, Cai YJ, Zhang DZ, Sang WC, Tan M, An ZS (2012) The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophys Res Lett 39(1):1–5. doi: 10.1029/2011GL050202 CrossRefGoogle Scholar
  12. Cook ER, Anchukaitis KJ, Buckley BM, D’Arrigo RD, Jacoby GC, Wright WE (2010) Asian monsoon failure and megadrought during the last millennium. Science (New York, NY) 328(5977):486–489. doi: 10.1126/science.1185188 CrossRefGoogle Scholar
  13. Dionisio A, Menezes R, Mendes DA (2004) Mutual information: a measure of dependency for nonlinear time series. Phys A Stat Mech Appl 344(1–2):326–329. doi: 10.1016/j.physa.2004.06.144 CrossRefGoogle Scholar
  14. Donges JF, Schultz HC, Marwan N, Zou Y, Kurths J (2011) Investigating the topology of interacting networks. Eur Phys J B 84:635–651. doi: 10.1140/epjb/e2011-10795-8 CrossRefGoogle Scholar
  15. Donges JF, Zou Y, Marwan N, Kurths J (2009) Complex networks in climate dynamics. Eur Phys J Spec Top 174:157–179. doi: 10.1140/epjst/e2009-01098-2 CrossRefGoogle Scholar
  16. Donges JF, Zou Y, Marwan N, Kurths J (2009) The backbone of the climate network. EPL (Europhys Lett) 87(4):48,007. doi: 10.1209/0295-5075/87/48007 Google Scholar
  17. Gadgil S (2003) The Indian Monsoon and its variability. Annu Rev Earth Planet Sci 31(1):429–467. doi: 10.1146/ CrossRefGoogle Scholar
  18. Ge-Li W, Tsonis AA (2009) A preliminary investigation on the topology of Chinese climate networks. Chin Phys B 18(11):5091–5106CrossRefGoogle Scholar
  19. Gozolchiani A, Havlin S, Yamasaki K (2011) Emergence of El Niño as an autonomous component in the climate network. Phys Rev Lett 107(14):1–5. doi: 10.1103/PhysRevLett.107.148501 CrossRefGoogle Scholar
  20. Gupta AK (2005) Solar influence on the Indian summer monsoon during the Holocene. Geophys Res Lett 32(17):2–5. doi: 10.1029/2005GL022685 CrossRefGoogle Scholar
  21. Gupta AK, Anderson DM, Overpeck JT (2003) Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421(6921):354–357. doi: 10.1038/nature01340 CrossRefGoogle Scholar
  22. Herzschuh U (2006) Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quat Sci Rev 25(1–2):163–178. doi: 10.1016/j.quascirev.2005.02.006 CrossRefGoogle Scholar
  23. Hong Y, Hong B, Lin Q, Zhu Y, Shibata Y, Hirota M, Uchida M, Leng X, Jiang H, Xu H, Wang H, Yi L (2003) Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth Planet Sci Lett 211(3–4):371–380. doi: 10.1016/S0012-821X(03)00207-3 CrossRefGoogle Scholar
  24. Hu C, Henderson G, Huang J, Xie S, Sun Y, Johnson K (2008) Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet Sci Lett 266(3–4):221–232. doi: 10.1016/j.epsl.2007.10.015 CrossRefGoogle Scholar
  25. Jones PD, Osborn TJ, Briffa KR (2001) The evolution of climate over the last millennium. Science (New York, NY) 292(5517):662–667. doi: 10.1126/science.1059126 CrossRefGoogle Scholar
  26. Kraskov A, Stögbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev E 69(6):1–16. doi: 10.1103/PhysRevE.69.066138 CrossRefGoogle Scholar
  27. Kumar KK, Kamala K, Rajagopalan B, Hoerling MP, Eischeid JK, Patwardhan SK, Srinivasan G, Goswami BN, Nemani R (2010) The once and future pulse of Indian monsoonal climate. Clim Dyn 36(11–12):2159–2170. doi: 10.1007/s00382-010-0974-0 Google Scholar
  28. Ma ZB, Cheng H, Tan M, Edwards RL, Li HC, You CF, Duan WH, Wang X, Kelly MJ (2012) Timing and structure of the Younger Dryas event in northern China. Quat Sci Rev 41:83–93. doi: 10.1016/j.quascirev.2012.03.006 CrossRefGoogle Scholar
  29. Malik N, Bookhagen B, Marwan N, Kurths J (2011) Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks. Clim Dyn. doi: 10.1007/s00382-011-1156-4
  30. Malik N, Marwan N, Kurths J (2010) Spatial structures and directionalities in Monsoonal precipitation over South Asia. Nonlinear Process Geophys 17(5):371–381. doi: 10.5194/npg-17-371-2010 CrossRefGoogle Scholar
  31. Managave SR, Sheshshayee MS, Bhattacharyya A, Ramesh R (2010) Intra-annual variations of teak cellulose δ18O in Kerala, India: implications to the reconstruction of past summer and winter monsoon rains. Clim Dyn 37(3–4):555–567. doi: 10.1007/s00382-010-0917-9 Google Scholar
  32. Mann ME, Fuentes JD, Rutherford S (2012) Underestimation of volcanic cooling in tree-ring-based reconstructions of hemispheric temperatures. Nat Geosci 5(3):202–205. doi: 10.1038/ngeo1394 CrossRefGoogle Scholar
  33. May W (2010) The sensitivity of the Indian summer monsoon to a global warming of 2°C with respect to pre-industrial times. Clim Dyn 37(9–10):1843–1868. doi: 10.1007/s00382-010-0942-8 Google Scholar
  34. Mayewski PA, Rohling EE, Curt Stager J, Karlén W, Maasch KA, David Meeker L, Meyerson EA, Gasse F, van Kreveld S, Holmgren K, Lee-Thorp J, Rosqvist G, Rack F, Staubwasser M, Schneider RR, Steig EJ (2004) Holocene climate variability. Quat Res 62(3):243–255. doi: 10.1016/j.yqres.2004.07.001 CrossRefGoogle Scholar
  35. Nazareth D, Soofi E, Zhao H (2007) Visualizing attribute interdependencies using mutual information, hierarchical clustering, multidimensional scaling, and self-organizing maps. In: 2007 40th annual Hawaii international conference on system sciences (HICSS’07) pp 53–53. doi: 10.1109/HICSS.2007.608
  36. Osborn TJ, Briffa KR (2006) The spatial extent of 20th-century warmth in the context of the past 1200 years. Science (New York, NY) 311(5762):841–844. doi: 10.1126/science.1120514 CrossRefGoogle Scholar
  37. Pant G, Kumar KR, Borgaonkar H (1988) Statistical models of climate reconstruction using tree ring data. Proc Indian Natn Sci Acad 54(3):354–364Google Scholar
  38. Ramesh R, Tiwari M, Chakraborty S, Managave SR, Yadava MG, Sinha DK (2010) Retrieval of south Asian monsoon variation during the Holocene from natural climate archives. Curr Sci 99(12):1170–1786Google Scholar
  39. Rehfeld K, Marwan N, Heitzig J, Kurths J (2011) Comparison of correlation analysis techniques for irregularly sampled time series. Nonlinear Process Geophys 18(3):389–404. doi: 10.5194/npg-18-389-2011 CrossRefGoogle Scholar
  40. Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61:261–293CrossRefGoogle Scholar
  41. Schewe J, Levermann A, Cheng H (2012) A critical humidity threshold for monsoon transitions. Clim Past 8(2):535–544. doi: 10.5194/cp-8-535-2012 CrossRefGoogle Scholar
  42. Schleser GH, Helle G, Lu A, Vos H (1999) Isotope signals as climate proxies: the role of transfer functions in the study of terrestrial archives. Quat Sci Rev 18:927–943CrossRefGoogle Scholar
  43. Schulz M, Stattegger K (1997) SPECTRUM: spectral analysis of unevenly spaced paleoclimatic time series. Comput Geosci 23(9):929–945. doi: 10.1016/S0098-3004(97)00087-3 CrossRefGoogle Scholar
  44. Sheppard PR, Tarasov PE, Graumlich LJ, Heussner KU, Wagner M, Sterle H, Thompson LG (2004) Annual precipitation since 515 BC reconstructed from living and fossil juniper growth of northeastern Qinghai Province, China. Clim Dyn 23(7–8):869–881. doi: 10.1007/s00382-004-0473-2 CrossRefGoogle Scholar
  45. Shukla RP, Tripathi KC, Pandey AC, Das I (2011) Prediction of Indian summer monsoon rainfall using Niño indices: a neural network approach. Atmos Res 102(1–2):99–109. doi: 10.1016/j.atmosres.2011.06.013 CrossRefGoogle Scholar
  46. Singh J, Yadav RR, Wilmking M (2009) A 694-year tree-ring based rainfall reconstruction from Himachal Pradesh, India. Clim Dyn 33(7–8):1149–1158. doi: 10.1007/s00382-009-0528-5 CrossRefGoogle Scholar
  47. Sinha A, Cannariato KG, Stott LD, Cheng H, Edwards RL, Yadava MG, Ramesh R, Singh IB (2007) A 900-year (600 to 1500 A.D.) record of the Indian summer monsoon precipitation from the core monsoon zone of India. Geophys Res Lett 34(16):1–5. doi: 10.1029/2007GL030431 CrossRefGoogle Scholar
  48. Sinha A, Stott L, Berkelhammer M, Cheng H, Edwards RL, Buckley B, Aldenderfer M, Mudelsee M (2011) A global context for megadroughts in monsoon Asia during the past millennium. Quat Sci Rev 30(1–2):47–62. doi: 10.1016/j.quascirev.2010.10.005 CrossRefGoogle Scholar
  49. Steinhaeuser K, Chawla NV, Ganguly AR (2010) Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science. Sci Technol. doi: 10.1002/sam.10100
  50. Stoica P, Sandgren N (2006) Spectral analysis of irregularly-sampled data: paralleling the regularly-sampled data approaches. Digit Signal Process 16(6):712–734. doi: 10.1016/j.dsp.2006.08.012 CrossRefGoogle Scholar
  51. Tan L, Cai Y, Cheng H, An Z, Edwards RL (2009) Summer monsoon precipitation variations in central China over the past 750years derived from a high-resolution absolute-dated stalagmite. Palaeogeogr Palaeoclimatol Palaeoecol 280(3–4):432–439. doi: 10.1016/j.palaeo.2009.06.030 CrossRefGoogle Scholar
  52. Tan M, Liu T (2003) Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature. Geophys Res Lett 30(12). doi: 10.1029/2003GL017352
  53. Thompson LG, Yao T, Mosley-Thompson E, Davis M, Henderson K, Lin PN (2000) A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science 289:1998–2001CrossRefGoogle Scholar
  54. Trenberth KE (2005) Relationships between precipitation and surface temperature. Geophys Res Lett 32(14):2–5. doi: 10.1029/2005GL022760 CrossRefGoogle Scholar
  55. Treydte KS, Schleser GH, Helle G, Frank DC, Winiger M, Haug GH, Esper J (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440(7088):1179–1182. doi: 10.1038/nature04743 CrossRefGoogle Scholar
  56. Tsonis AA, Swanson KL (2008) Topology and predictability of El Niño and La Niña networks. Phys Rev Lett 100:228,502. doi: 10.1103/PhysRevLett.100.228502 CrossRefGoogle Scholar
  57. Tsonis Aa, Swanson KL, Roebber PJ (2006) What do networks have to do with climate? Bull Am Meteorol Soc 87(5):585–595. doi: 10.1175/BAMS-87-5-585 CrossRefGoogle Scholar
  58. Von Rad U, Schaaf M, Michels K, Schulz H, Berger W, Sirocko F (1999) A 5000-yr record of climate change in varved sediments from the oxygen minimum zone off Pakistan, Northeastern Arabian Sea. Quat Res 51(1):39–53. doi: 10.1006/qres.1998.2016 CrossRefGoogle Scholar
  59. Wang P, Clemens S, Beaufort L, Braconnot P, Ganssen G, Jian Z, Kershaw P, Sarnthein M (2005) Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quat Sci Rev 24(5–6):595–629. doi: 10.1016/j.quascirev.2004.10.002 CrossRefGoogle Scholar
  60. Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski Ca, Li X (2005) The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science (New York, NY) 308(5723):854–857. doi: 10.1126/science.1106296 CrossRefGoogle Scholar
  61. Wang Y, Liu X, Herzschuh U (2010) Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth Sci Rev 103(3–4):135–153. doi: 10.1016/j.earscirev.2010.09.004 CrossRefGoogle Scholar
  62. Wang YJ, Cheng H, Edwards RL, An ZS, Wu JY, Shen CC, Dorale JA (2001) A high-resolution absolute-dated late Pleistocene Monsoon record from Hulu Cave, China. Science (New York, NY) 294(5550):2345–2348. doi: 10.1126/science.1064618 CrossRefGoogle Scholar
  63. Yadava M, Ramesh R, Pant G (2004) Past monsoon rainfall variations in peninsular India recorded in a 331-year-old speleothem. The Holocene 14(4):517–524. doi: 10.1191/0959683604hl728rp CrossRefGoogle Scholar
  64. Yamasaki K, Gozolchiani A, Havlin S (2009) Climate networks based on phase synchronization analysis track El-Niño. Progr Theor Phys Suppl 179(179):178–188. doi: 10.1143/PTPS.179.178 CrossRefGoogle Scholar
  65. Yi L, Yu H, Ge J, Lai Z, Xu X, Qin L, Peng S (2011) Reconstructions of annual summer precipitation and temperature in north-central China since 1470 AD based on drought/flood index and tree-ring records. Clim Change 110(1–2):469–498. doi: 10.1007/s10584-011-0052-6 Google Scholar
  66. Zhang J, Chen F, Holmes Ja, Li H, Guo X, Wang J, Li S, Lü Y, Zhao Y, Qiang M (2011) Holocene monsoon climate documented by oxygen and carbon isotopes from lake sediments and peat bogs in China: a review and synthesis. Quat Sci Rev 30(15–16):1973–1987. doi: 10.1016/j.quascirev.2011.04.023 CrossRefGoogle Scholar
  67. Zhang P, Cheng H, Edwards RL, Chen F, Wang Y, Yang X, Liu JJ, Tan M, Wang X, An C, Dai Z, Zhou J, Zhang D, Jia J, Jin L, Johnson KR (2008) A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 322(5903):940–942. doi: 10.1126/science.1163965 CrossRefGoogle Scholar
  68. Zhou T, Li B, Man W, Zhang L, Zhang J (2011) A comparison of the Medieval Warm Period, Little Ice Age and 20th century warming simulated by the FGOALS climate system model. Chin Sci Bull 56(28–29):3028–3041. doi: 10.1007/s11434-011-4641-6 CrossRefGoogle Scholar
  69. Zou Y, Romano MC, Thiel M, Marwan N, Kurths J (2011) Inferring indirect coupling by means of recurrences. Int J Bifurcation Chaos 21(4):1099–1111. doi: 10.1142/S0218127411029033 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Kira Rehfeld
    • 1
  • Norbert Marwan
    • 1
  • Sebastian F. M. Breitenbach
    • 2
  • Jürgen Kurths
    • 1
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.ETHZ Geologisches Institut, Climate GeologyZurichSwitzerland

Personalised recommendations