Climate Dynamics

, Volume 40, Issue 5–6, pp 1291–1299 | Cite as

Maintenance of PDO variability during the mid-holocene in PMIP2



Using the Paleoclimate Modeling Intercomparison Project Phase 2 (PMIP2), we investigate Pacific Decadal Oscillation (PDO) variability during the Mid-Holocene (6,000 years ago), especially maintenance of the PDO variability during the mid-Holocene despite reduced El Nino-Southern Oscillation (ENSO) activity. Most of the models participating PMIP2 identified the reduced ENSO activity during the mid-Holocene, but essentially little difference in PDO variability between the pre-industrial and mid-Holocene periods. Through multiple regression and partial correlation analysis, we found that the influence of the ENSO on the PDO was reduced due to reduced ENSO activity, but that the influence of local atmospheric circulation (Aleutian Low; AL) was enhanced during the mid-Holocene even though the variability of AL itself did not change much between the mid-Holocene and the present. That is, the reduction in PDO activity due to the weaken ENSO is offset by the enhanced PDO attributable to the intensified influence of the AL. As a result, the PDO variability during the mid-Holocene was as active as that during the pre-industrial era.


PDO ENSO Holocene Mid-holocene Aleutian Low El Nino PMIP 



We acknowledge the international modeling groups for providing their data for analysis, and the Laboratoire des Sciences du Climat et de l’Environnement (LSCE) for collecting and archiving the model data. More information is available on This work was funded by the Korea Meteorological Administration Research and Development Program under Grant CATER 2012-3043.


  1. Alexander MA, Deser C (1995) A mechanism for the recurrence of wintertime midlatitude SST anomalies. J Phys Oceanogr 25:122–137CrossRefGoogle Scholar
  2. Alexander MA, Deser C, Timlin MS (1999) The re-emergence of SST anomalies in the North Pacific Ocean. J Clim 12:2419–2431CrossRefGoogle Scholar
  3. Alexander MA, Bladé I, Newman M, Lanzante JR, Lau N-C, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15:2205–2231CrossRefGoogle Scholar
  4. An S-I, Wang B (2005) The forced and intrinsic low-frequency modes in the North Pacific. J Clim 18:876–885CrossRefGoogle Scholar
  5. Barron JA, Anderson L (2011) Enhanced late holocene ENSO/PDO expression along the margins of the eastern North Pacific. Quat Int 235:3–12CrossRefGoogle Scholar
  6. Braconnot P et al (2007) Results of PMIP2 coupled simulations of the mid-holocene and last glacial maximum—part 1: experiments and large-scale features. Clim Past 3:261–277CrossRefGoogle Scholar
  7. Brown J, Tudhope AW, Collins M, McGregor HV (2008) Mid-Holocene ENSO: issues in quantitative model-proxy data comparisons. Paleoceanography 23:PA3202. doi: 10.1029/2007PA001512 CrossRefGoogle Scholar
  8. Chiang JCH, Fang Y, Chang P (2009) Pacific climate change and ENSO activity in the mid-holocene. J Clim 22:923–939CrossRefGoogle Scholar
  9. Clement AC, Seager R, Cane MA (2000) Suppression of El Nino during the mid-Holocene by changes in the earth’s orbit. Paleoceanography 15:731–737CrossRefGoogle Scholar
  10. Fisler J, Hendy IL (2008) California current system response to late holocene climate cooling in southern California. Geophys Res Lett 35:L09702. doi: 10.1029/2008GL033902 CrossRefGoogle Scholar
  11. Friddell JE, Thunell RC, Guilderson TP, Kashgarian M (2003) Increased northeast Pacific climate variability during the warm middle holocene. Geophys Res Lett 30. doi: 10.1029/2002GL016834
  12. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transport in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168CrossRefGoogle Scholar
  13. Hoskins BJ, Karoly DJ (1981) The steady state response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196CrossRefGoogle Scholar
  14. Isono D, Yamamoto M, Irino T, Oba T, Murayama M, Nakamura T, Kawahata H (2009) The 1500-year climate oscillation in the midlatitude North Pacific during the holocene. Geology 37:591–594CrossRefGoogle Scholar
  15. Jacob RL, Schafer C, Foster I, Tobis M, Anderson J (2001) Computational design and performance of the fast ocean-atmosphere model, ver. 1. In: Alexandrov VN, Dongarra JJ, Juliano BA, Renner RS, Tan CJK (eds) Proceedings of the international conference on computational science (ICCS), LNCS 2073. Springer, Heidelberg, pp 175–184Google Scholar
  16. K-1 Model Developers (2004) K-1 coupled model (MIROC) description. Technical report 1, Center for Climate System Research, University of TokyoGoogle Scholar
  17. Kim J-H, Rimbu N, Lorenz J, Lohmann G, Nam S-I, Schouten S, Ruhlemann C, Schneider RR (2004) North Pacific and north Atlantic sea-surface temperature variability during the holocene. Quat Sci Rev 23:2141–2154CrossRefGoogle Scholar
  18. Koutavas A, Demenocal B, Olive GC, Lynch-Stieglitz J (2006) Mid-holocene El Nino-Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediment. Geology 34:993–996CrossRefGoogle Scholar
  19. Kumar A, Leetmaa A, Ji M (1994) Simulations of atmospheric variability induced by sea surface temperatures and implications for global warming. Science 266:632–634CrossRefGoogle Scholar
  20. Kutzbach JE (1981) Monsoon climate of the early Holocene: climate experiment with the earth’s orbital parameters for 9000 years ago. Science 214:59–61CrossRefGoogle Scholar
  21. Latif M, Barnett TP (1996) Decadal climate variability over the North Pacific and North America: dynamics and predictability. J Climate 9:2407–2423CrossRefGoogle Scholar
  22. Lau N-C, Nath MJ (1994) A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere-ocean system. J Clim 7:1184–1207CrossRefGoogle Scholar
  23. Liu Z, Kutzbach J, Wu LX (2000) Modeling climate shift of El Nino variability in the holocene. Geophys Res Lett 27:2265–2268CrossRefGoogle Scholar
  24. Liu Z, Harrison SP, Kutzbach J, Otto-Bliesner B (2004) Global monsoons in the mid-holocene and oceanic feedback. Clim Dyn 22:157–182CrossRefGoogle Scholar
  25. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific decadal climate oscillation with impacts on salmon. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  26. Marti O et al. (2005) The new IPSL climate system model: IPSL-CM4. Technical report, Institut Pierre Simon Laplace des Sciences de l’Environnement Global IPSL Case101 4 place Jussieu Paris FranceGoogle Scholar
  27. McGregor HV, Gagan MK (2004) Western Pacific coral δ18O records of anomalous holocene variability in the El Nino-Southern oscillation. Geophys Res Lett 31:L11204. doi: 10.1029/2004GL019972 CrossRefGoogle Scholar
  28. Meyers SD, Melsom A, Mitchum GT, O’Brien JJ (1998) Detection of the fast Kelvin wave teleconnection due to El Niño—southern oscillation. J Geophys 103:27655–27663CrossRefGoogle Scholar
  29. Nelson DB et al (2011) Drought variability in the Pacific Northwest from a 6,000-yr lake sediment record. PNAS 108:3870–3875CrossRefGoogle Scholar
  30. Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific decadal oscillation. J Clim 16:3853–3857CrossRefGoogle Scholar
  31. Nigam S, Guan B, Ruiz-Barradas A (2011) Key role of the Atlantic multidecadal oscillation in 20th century drought and wet periods over the Great Plains. Geophys Res Lett 38:L16713. doi: 10.1029/2011GL048650 CrossRefGoogle Scholar
  32. Otto-Bliesner BL (1999) El Nino/La Nina and Sahel precipitation during the middle holocene. Geophy Res Lett 26:87–90CrossRefGoogle Scholar
  33. Otto-Bliesner BL, Brady EC, Shin S-I, Liu ZX, Shields C (2003) Modeling El Nino and its teleconnections during the last glacial-interglacial cycle. Geophys Res Lett 30:2198. doi: 10.1029/2003GL018553 CrossRefGoogle Scholar
  34. Pierce DW, Barnett TP, Latif M (2000) Connections between the Pacific Ocean Tropics and midlatitudes on decadal timescales. J Clim 13:1173–1194CrossRefGoogle Scholar
  35. Rein B, Luckge A, Reinhardt L, Sirocko F, Wolf A, Dullo WC (2005) El Nino variability off Peru during the last 20,000 years. Paleoceanography 20:PA4003. doi: 10.1029/2004PA001099 CrossRefGoogle Scholar
  36. Rodbell DT, Seltzer GO, Anderson DM, Abbott MB, Enfield DB, Newman JH (1999) An ~ 15,000-year record of El Nino-driven alleviation in southwestern Ecuador. Science 283:516–520CrossRefGoogle Scholar
  37. Schneider N, Cornuelle BD (2005) The forcing of the Pacific decadal oscillation. J Clim 18:4355–4373CrossRefGoogle Scholar
  38. Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1854–1997). J Clim 17:2466–2477CrossRefGoogle Scholar
  39. Stone JR, Fritz SC (2006) Multidecadal drought and Holocene climate instability in the Rocky Mountains. Geology 34:409–412CrossRefGoogle Scholar
  40. Tian J, Nelson DM, Hu FS (2006) Possible linkages of late-holocene drought in the North American midcontinent to Pacific decadal oscillation and solar activity. Geophys Res Lett 33:L23702. doi: 10.1029/2006GL028169 CrossRefGoogle Scholar
  41. Timm O, Timmermann A (2007) Simulation of the last 21,000 years using accelerated transient boundary conditions. J Clim 20:4377–4401CrossRefGoogle Scholar
  42. Tranberth KE, Hurrel JW (1994) Decadal atmospheric-ocean variations in the Pacific. Clim Dyn 9:303–319CrossRefGoogle Scholar
  43. Tudhope AW et al (2001) Variability in the El Nino-Southern oscillation through a glacial-interglacial cycle. Science 291:1511–1517CrossRefGoogle Scholar
  44. Yu Y, Zhang X, Guo Y (2004) Global coupled ocean–atmosphere general circulation models in LASG/IAP. Adv Atmos Sci 21:444–455CrossRefGoogle Scholar
  45. Yukimoto S, Noda A (2002) Improvements of the Meteorological Research Institute Global Ocean–atmosphere coupled GCM (MRI-CGCM2) and its climate sensitivity. Technical report 10 NIES JapanGoogle Scholar
  46. Zheng W, Braconnot P, Guilyardi E, Merkel U, Yu Y (2008) ENSO at 6 ka and 21 ka from ocean–atmosphere coupled model simulations. Clim Dyn 30:745–762CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Atmospheric SciencesYonsei UniversitySeoulKorea

Personalised recommendations