Advertisement

Climate Dynamics

, Volume 41, Issue 2, pp 327–340 | Cite as

A new paradigm for the predominance of standing Central Pacific Warming after the late 1990s

  • Baoqiang Xiang
  • Bin Wang
  • Tim Li
Article

Abstract

Canonical El Niño has a warming center in the eastern Pacific (EP), but in recent decades, El Niño warming center tends to occur more frequently in the central Pacific (CP). The definitions and names of this new type of El Niño, however, have been notoriously diverse, which makes it difficult to understand why the warming center shifts. Here, we show that the new type of El Niño events is characterized by: 1) the maximum warming standing and persisting in the CP and 2) the warming extending to the EP only briefly during its peak phase. For this reason, we refer to it as standing CP warming (CPW). Global warming has been blamed for the westward shift of maximum warming as well as more frequent occurrence of CPW. However, we find that since the late 1990s the standing CPW becomes a dominant mode in the Pacific; meanwhile, the epochal mean trade winds have strengthened and the equatorial thermocline slope has increased, contrary to the global warming-induced weakening trades and flattening thermocline. We propose that the recent predominance of standing CPW arises from a dramatic decadal change characterized by a grand La Niña-like background pattern and strong divergence in the CP atmospheric boundary layer. After the late 1990s, the anomalous mean CP wind divergence tends to weaken the anomalous convection and shift it westward from the underlying SST warming due to the suppressed low-level convergence feedback. This leads to a westward shift of anomalous westerly response and thus a zonally in-phase SST tendency, preventing eastward propagation of the SST anomaly. We anticipate more CPW events will occur in the coming decade provided the grand La Niña-like background state persists.

Keywords

Central Pacific Warming La Niña-like mean state change Convection Low-level convergence feedback 

Notes

Acknowledgments

We would like to thank Dr. Mark A Cane and Jong-Seong Kug for their comments and suggestions on this study. This work has been supported by the Climate Dynamics Program of the National Science Foundation under award No. AGS-1005599, and APEC Climate Center. The authors acknowledge partial support from International Pacific Research Center which is sponsored by the JAMSTEC, NASA (NNX07AG53G) and NOAA (NA09OAR4320075). TL is supported by ONR grant N000141210450. This is SOEST contribution number 8690 and IPRC contribution number 895.

References

  1. Adler RF et al (2003) The Version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeor 4:1147–1167CrossRefGoogle Scholar
  2. An S-I, Wang B (2000) Interdecadal change of the structure of ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055CrossRefGoogle Scholar
  3. Ashok K, Behera S, Rao AS, Weng H, Yamagata T (2007) El Niño Modoki and its teleconnection. J Geophys Res 112:C11007. doi: 10.1029/2006JC003798 CrossRefGoogle Scholar
  4. Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. eighth symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface, AMS 84th Annual Meeting, Washington State Convention and Trade Center, Seattle, Washington, pp 11–15Google Scholar
  5. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97:163–172CrossRefGoogle Scholar
  6. Cane MA, Münnich M, Zebiak SE (1990) A study of self-excited oscillations of the tropical ocean-atmosphere system. Part I: liner analysis. J Atmos Sci 47:1562–1577CrossRefGoogle Scholar
  7. Chen G, Tam CY (2010) Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys Res Lett 37:L01803. doi: 10.1029/2009GL041708 Google Scholar
  8. Choi J, An S-I, Kug J-S, Yeh S-W (2011) The role of mean state on changes in El Niño’s flavor. Clim Dyn 37:1205–1215. doi: 10.1007/s00382-010-0912-1 Google Scholar
  9. Ding Q, Steig EJ, Battisti DS, Küttel M (2011) Winter warming in West Antarctica caused by central Pacific warming. Nat Geosci 4:39–403CrossRefGoogle Scholar
  10. Fedorov AV, Philander SGH (2000) Is El Niño changing? Science 288:1997–2002. doi: 10.1126/science.288.5473.1997 CrossRefGoogle Scholar
  11. Ham Y-G, Kug J-S (2011) How well do current climate models simulate two-type of El Niño? Clim Dyn. doi: 10.1007/s00382-011-1157-3
  12. Hong C–C, Li Y-H, Li T, Lee M-Y (2011) Impacts of central Pacific and eastern Pacific El Niños on tropical cyclone tracks over the western North Pacific. Geophys Res Lett 38:L16712. doi: 10.1029/2011GL048821 Google Scholar
  13. Jin F-F, Kim ST, Bejarano L (2006) A coupled stability index for ENSO. Geophys Res Lett 33:L23708. doi: 101029/2006GL027221 CrossRefGoogle Scholar
  14. Kanamitsu M et al (2002) NCEP-DEO AMIP-II Reanalysis (R-2). Bull Amer Met Soc 83:1631–1643CrossRefGoogle Scholar
  15. Kao H-Y, Yu J-Y (2009) Contrasting eastern-Pacific and central Pacific types of El Niño. J Clim 22:615–632. doi: 10.1175/2008JCLI2309.1 CrossRefGoogle Scholar
  16. Kim H, Webster P, Curry J (2009) Impact of shifting patterns of Pacific Ocean warming on north Atlantic tropical cyclones. Science 325:77–80CrossRefGoogle Scholar
  17. Kucharski F, Kang I-S, Farneti R, Feudale L (2011) Tropical Pacific response to 20th century Atlantic warming. Geophys Res Lett 38:L03702. doi: 10.1029/2010GL046248 CrossRefGoogle Scholar
  18. Kug J-S, Jin F–F, An SA (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515. doi: 10.1175/2008JCLI2624.1 CrossRefGoogle Scholar
  19. Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian Monsoon failure during El Niño. Science 314:115–119CrossRefGoogle Scholar
  20. Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomaly during El Niño autumn and winter. Geophys Res Lett 32:L16705. doi: 10.1029/2005GL022860 CrossRefGoogle Scholar
  21. Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603. doi: 10.1029/2010GL044007 Google Scholar
  22. Li T (1997) Phase transition of the El Niño-Southern Oscillation: a stationary SST mode. J Atmos Sci 54:2872–2887CrossRefGoogle Scholar
  23. Li T, Hogan TF (1999) The role of the annual mean climate on seasonal and interannual variability of the tropical Pacific in a coupled GCM. J Clim 12:780–792CrossRefGoogle Scholar
  24. Lorenzo Di et al (2010) Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat Geosci 3:762–765CrossRefGoogle Scholar
  25. McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38:L15709. doi: 10.1029/2011GL048275 CrossRefGoogle Scholar
  26. Park J-S, Yeh S-W, Kug J-S (2012) Revisited relationship between tropical and North Pacific sea surface temperature variations. Geophys Res Lett 39:L02703. doi: 10.1029/2011GL050005 CrossRefGoogle Scholar
  27. Roeckner E (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max-Planck-Institute Meteorol Rep 218:90Google Scholar
  28. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s Historical Merged Land-Ocean Surface Temperature Analysis (1880–2006). J Clim 21:2283–2293CrossRefGoogle Scholar
  29. Solomon S et al (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327:1219–1223CrossRefGoogle Scholar
  30. Su J, Zhang R, Li T, Rong X, Kug J-S, Hong C–C (2010) Amplitude asymmetry of El Niño and La Niña in the eastern equatorial Pacific. J Clim 23(3):605–617CrossRefGoogle Scholar
  31. Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287CrossRefGoogle Scholar
  32. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340CrossRefGoogle Scholar
  33. Wang B (1995) Interdecadal changes in El Niño onset in the last four decades. J Clim 8:258–267Google Scholar
  34. Wang B, Liu J, Kim H-J, Webster PJ, Yim S-Y (2011) Recent change of global monsoon precipitation (1979–2008). Clim Dyn. doi: 10.1007/s00382-011-1266-z
  35. Weng H, Ashok K, Behera WK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:113–129CrossRefGoogle Scholar
  36. Weng H, Behera S, Yamagata T (2009) Anomalous winter climate conditions in the Pacific Rim during recent El Niño Modoki and El Niño events. Clim Dyn 32:663–674. doi: 10.1007/s00382-008-0394-6 CrossRefGoogle Scholar
  37. Xiang B, Wang B, Ding Q, Jin F–F, Fu X, Kim H-J (2011) Reduction of the thermocline feedback associated with mean SST bias in ENSO simulation. Clim Dyn. doi: 10.1007/s00382-011-1164-4 Google Scholar
  38. Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman B, Jin F–F (2009) El Niño in a changing climate. Nature 461:511–514. doi: 10.1038/nature08316 CrossRefGoogle Scholar
  39. Yeh S-W, Kirtman BP, Kug J-S, Park W, Latif M (2011) Natural variability of the central Pacific El Niño event on multi-centennial timescales. Geophys Res Lett 38:L02704. doi: 10.1029/2010GL045886 CrossRefGoogle Scholar
  40. Yu J-Y, Kao H-Y, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J Clim 23:2869–2884CrossRefGoogle Scholar
  41. Zebiak SE (1986) Atmospheric convergence feedback in a simple model for El Niño. Mon Wea Rev 114:1263–1271CrossRefGoogle Scholar
  42. Zebiak SE, Cane MA (1987) A Model El-Niño Southern Oscillation. Mon Wea Rev 115:2262–2278CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.International Pacific Research Center, School of Ocean and Earth Science and TechnologyUniversity of HawaiiHonoluluUSA
  2. 2.Department of Meteorology, School of Ocean and Earth Science and TechnologyUniversity of HawaiiHonoluluUSA

Personalised recommendations