Climate Dynamics

, Volume 40, Issue 3–4, pp 619–636 | Cite as

A 20-year coupled ocean-sea ice-atmosphere variability mode in the North Atlantic in an AOGCM



In order to understand potential predictability of the ocean and climate at the decadal time scales, it is crucial to improve our understanding of internal variability at this time scale. Here, we describe a 20-year mode of variability found in the North Atlantic in a 1,000-year pre-industrial simulation of the IPSL-CM5A-LR climate model. This mode involves the propagation of near-surface temperature and salinity anomalies along the southern branch of the subpolar gyre, leading to anomalous sea-ice melting in the Nordic Seas, which then forces sea-level pressure anomalies through anomalous surface atmospheric temperatures. The wind stress associated to this atmospheric structure influences the strength of the East Greenland Current across the Denmark Strait, which, in turn, induces near-surface temperature and salinity anomalies of opposite sign at the entrance of the Labrador Sea. This starts the second half of the cycle after approximatively 10 years. The time scale of the cycle is thus essentially set by advection of tracers along the southern branch of the subpolar gyre, and by the time needed for anomalous East Greenland Current to accumulate heat and freshwater anomalies at the entrance of the Labrador Sea. The Atlantic meridional overturning circulation (AMOC) does not play a dominant role in the mode that is confined in the subpolar North Atlantic, but it also has a 20-year preferred timescale. This is due to the influence of the propagating salinity anomalies on the oceanic deep convection. The existence of this preferred timescale has important implications in terms of potential predictability of the North Atlantic climate in the model, although its realism remains questionable and is discussed.


Decadal climate variability Thermohaline circulation Ocean-sea ice-atmosphere coupling Subpolar North Atlantic Coupled climate model 



The research leading to these results has received funding from the European Community’s 7th framework programme (FP7/2007-2013) under grant agreement No. GA212643 (THOR: “Thermohaline Overturning—at Risk”, 2008–2012) and was supported by the “Gestion des Impacts du Changement Climatique” Programme (GICC) under the EPIDOM project funded by MEDDTL (French Ministery of Ecology and sustained development). We also acknowledge financial support from the CNRS/INSU/LEFE/EVE french program through the Ti Ammo project. We are grateful to Claude Frankignoul, Guillaume Gastineau and Julie Deshayes for very interesting discussions concerning the results of this paper.


  1. Aagaard K, Coachman L (1968) The East Greenland Current north of Denmark Strait, part i. Arctic 21:181–200Google Scholar
  2. Alexander MA, Bhatt US, Walsh JE, Timlin MS, Miller JS, Scott JD (2004) The atmospheric response to realistic arctic sea ice anomalies in an AGCM during winter. J Clim 17: 890–905. doi: 10.1175/1520-0442(2004)017<0890:TARTRA>2.0.COand2 Google Scholar
  3. Alvarez-Garcia F, Latif M, Biastoch A (2007) On Multidecadal and Quasi-Decadal North Atlantic Variability. J Clim 21:3433–3452CrossRefGoogle Scholar
  4. Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Global Biogeochem Cycles 20:GB2017. doi: 10.1029/2005GB002591 CrossRefGoogle Scholar
  5. Balmaseda MA, Ferranti L, Molteni F, Palmer TN (2010) Impact of 2007 and 2008 arctic ice anomalies on the atmospehric circulation: implications for long-range predictions. QJRMS 136:1655–1664CrossRefGoogle Scholar
  6. Belkin IMS, Levitus S, Antonov J, Malmberg S-A (1998) Great Salinity Anomalies in the North Atlantic. Prog Oceanogr 41:1–68CrossRefGoogle Scholar
  7. Bigg GR, Wadley MR (2007) Simulation of Great Salinity Anomalies in coupled climate models. J Geophys Res 112:C03017. doi: 10.1029/2006JC003475
  8. Born A, Mignot J (2011) Dynamics of decadal variability in the Atlantic subpolar gyre: a stochastically forced oscillator. Clim Dyn (in press)Google Scholar
  9. Bouillon S, Morales-Maqueda M, Legat V, Fichefet T (2009) An elastic-viscous-plastic sea ice model formulated on arakawa b and c grids. Ocean Model 27:174–184. doi: 10.1016/j.ocemod.2009.01.004 CrossRefGoogle Scholar
  10. Bower AS, MS Lozier, SF Gary, Boning CW (2009) Interior pathways of the North Atlantic meridional overturning circulation. Nature 459:243–247. doi: 10.1038/nature07979 Google Scholar
  11. Bretherton C, Smith C, Wallace J (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541CrossRefGoogle Scholar
  12. Bugnion V, Hill C, Stone PH (2006) An adjoint analysis of the meridional overturning circulation in a hybrid coupled model. J Clim 19:3751–3767CrossRefGoogle Scholar
  13. Cheng W, Bleck R, Rooth C (2004) Multi-decadal thermohaline variability in an ocean-atmosphere general circulation model. Clim Dyn 22:573–590Google Scholar
  14. Chylek P, Folland CK, Dijkstra HA, Lesins G, Dubey MK (2011) Ice-core data evidence for a prominent near 20 year time-scale of the Atlantic multidecadal oscillation. Geophys Res Lett 38:L13704Google Scholar
  15. Conil S, Li LZ-X (2005) Linearity of the atmospheric response to North Atlantic SST and sea ice anomalies. J Clim 18:1986–2003. doi: 10.1175/JCLI3388.1 CrossRefGoogle Scholar
  16. Conkright ME, Locarnini RA, Garcia HE, OBrien TD, Boyer TP, Stephens C, Antonov JI (2002) World Ocean Atlas 2001: Objective analyses, data statistics, and figures, CD-ROM Documentation, volume 17. NOAA Silver SpringGoogle Scholar
  17. Cunningham AS, ASG, KBA, BMA (2003) Transport and variability of the antarctic circumpolar current in the drake passage. J Geophys Res 108. doi: 10.1029/2001JC001147
  18. Cunningham AS, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJ-M, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317:935–938. doi: 10.1126/science.1141304 CrossRefGoogle Scholar
  19. Danabasoglu G (2008) On multidecadal variability of the Atlantic meridional overturning circulation in the community climate system model version 3. J Clim 21:5524–5544. doi: 10.1175/2008JCLI2019.1 CrossRefGoogle Scholar
  20. Delworth T, Zhang R, Mann ME (2007) Decadal to centennial variability of the Atlantic from observations and models. Geophys Monogr 173:131–148CrossRefGoogle Scholar
  21. Delworth TL, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13:1481–1495CrossRefGoogle Scholar
  22. Delworth TL, Manabe S, Stouffer R (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J Clim 6:1993–2011CrossRefGoogle Scholar
  23. Delworth TL, Manabe S, Stouffer RJ (1997) Multidecadal climate variability in the Greenland Sea and surrounding regions: a coupled model simulation. Geophys Res Lett 24(3):257–260CrossRefGoogle Scholar
  24. Deser C, Magnusdottir G, Saravanan R, Phillips A (2004) The effects of North Atlantic SST and sea-ice anomalies on the winter circulation in CCM3, Part II: direct and indirect components of the response. J Clim 17:877–889CrossRefGoogle Scholar
  25. Dickson R, Meincke J, Malmberg S-A, Lee A (1988) The Great Salinity Anomaly in the North Atlantic, 1968–1982. Prog Oceanogr 20:103–151CrossRefGoogle Scholar
  26. Dong B-W, Sutton R (2005) Mechanism of interdecadal thermohaline circulation variability in a coupled ocean-atmosphere GCM. JC 18:1117–1135CrossRefGoogle Scholar
  27. Dufresne et al (2012) Overview of the IPSL-CM5 earth system model with an emphasis on model and forcing changes between CMIP3 and CMIP5. Clim Dyn (in rev)Google Scholar
  28. Eden C, Willebrand J (2001) Mechanisms of interannual to decadal variability of the North Atlantic circulation. J Clim 14:2266–2280CrossRefGoogle Scholar
  29. Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:2609–2612CrossRefGoogle Scholar
  30. Frankcombe L, von der Heydt A, Dijsktra HA (2010) North Atlantic multidecadal climate variability: an investigation of dominant time scales and processes. J Clim 23:3626–3638CrossRefGoogle Scholar
  31. Frankignoul C, Kestenare E, Mignot J (2002) The surface heat flux feedback. Part II: direct and indirect estimates in the ECHAM4/OPA8 coupled GCM. Clim Dyn 19: 649–655. doi: 10.1007/s00382-002-0253-9 Google Scholar
  32. Ganachaud A, Wunsch C (2003) Large-scale ocean heat and freshwater transports during the World Ocean circulation experiment. J Clim 16:696–705CrossRefGoogle Scholar
  33. Gastineau G, D’Andrea F, Frankignoul C (2012) Atmospheric response to the North Atlantic ocean variability on seasonal to decadal time scales. Clim Dyn (in press)Google Scholar
  34. Gastineau G, Frankignoul C (2011) Cold-season atmospheric response to the natural variability of the Atlantic meridional overturning circulation. Clim Dyn. doi: 10.1007/s00382-011-1109-y
  35. Goosse HG, Selten FS, Haarsma RH, Opsteegh JO (2002) A mechanism of decadal variability of the sea-ice volume in the northern hemisphere. Clim Dyn 19: 61–83 doi: 10.1007/s00382-001-0209-5. URL
  36. Greatbatch RJFA, GA, LS (1991) A diagnosis of interpentadal circulation changes in the North Atlantic. J Geophys Res 96:22009–22023Google Scholar
  37. Guemas V, Codron F (2011) Differing impacts of resolution changes in latitude and longitude on the mid-latitudes in the LMDZ GCM. J Clim. doi: 10.1175/2011JCLI4093.1
  38. Guemas V, Salas-Melia D (2008) Simulation of the Atlantic meridional overturning circulation in an atmosphere-ocean global coupled model. Part I : a mechanism governing the variability of ocean convection in a preindustrial experiment. Clim Dyn 31:29–48. doi: 10.1007/s00382-007-0336-8 CrossRefGoogle Scholar
  39. Hakkinen S, Rhines PB (2004) Surface salinity variability in the northern North Atlantic during recent decades. Science 304(5670):555–559. doi: 10.1126/science.1094917 CrossRefGoogle Scholar
  40. Hawkins E, Sutton R (2007) Variability of the Atlantic thermohaline circulation described by three-dimensional empirical orthogonal functions. Clim Dyn 29:745–762CrossRefGoogle Scholar
  41. Hibler W (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9: 817–846Google Scholar
  42. Hourdin F, Foujols M-A, Codron F, Guemas V, Dufresne J-L, Bony S, Denvil S, Guez L, Lott F, Ghattas J, Braconnot P, Marti O, Meurdesoif Y, Bopp L (2012) Climate and sensitivity of the IPSL-CM5A coupled model: impact of the LMDZ atmospheric grid configuration. Clim Dyn (in rev)Google Scholar
  43. Hulburt HE, Hogan PJ (2000) Impact of 1/8 to 1/64 resolution on gulf-stream model-data comparisons in basin-scale subtropical Atlantic Ocean models. Dyn Atmos Ocean 32:283–330CrossRefGoogle Scholar
  44. Johns WE, SJ, BJM, WDR (1995) Gulf Stream structure, transport and recirculation near 68W. J Geophys Res 100:817–838Google Scholar
  45. Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18:4013–4031. doi: 10.1175/JCLI3462.1 CrossRefGoogle Scholar
  46. Kleinen T, Osborn T, Briffa K (2009) Sensitivity of climate response to variations in freshwater hosing location. Ocean Dyn 59:509–521. doi: 10.1007/s10236-009-0189-2 CrossRefGoogle Scholar
  47. Knight J, Allan R, Folland C, Vellinga M, Mann M (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi: 10.1029/2005GL024233 CrossRefGoogle Scholar
  48. Krinner GN, Viovy N, de Noblet-Ducoudre N, Oge G, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice C (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Biogeochem Cyc 19:GB1015. doi: 10.1029/2003GB002199 CrossRefGoogle Scholar
  49. Kwon Y-O, Frankignoul C (2011) Stochastically-driven multidecadal variability of the Atlantic meridional overturning circulation in ccsm3. Clim Dyn 38:859–876. doi: 10.1007/s00382-011-1040-2 Google Scholar
  50. Levermann A, Born A (2007) Bistability of the Atlantic subpolar gyre in a coarse-resolution model. Geophys Res Lett 34:L24605CrossRefGoogle Scholar
  51. Madec G (2008) NEMO ocean engine. Note du Pole de modelisation, Institut Pierre-Simon Laplace (IPSL) No 27Google Scholar
  52. Marini C, Frankignoul C, Mignot J (2011) Links between the southern annular mode and the Atlantic meridional overturning circulation in a climate model. J Clim 24(3):624–640. doi: 10.1175/2010JCLI3576.1 CrossRefGoogle Scholar
  53. Marti O, Braconnot P, Dufresne J-L, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Codron F, de Noblet N, Denvil S, Fairhead L, Fichefet T, Foujols M-A, Friedlingstein P, Goosse H, Grandpeix J-Y, Guilyardi E, Hourdin F, Idelkadi A, Kageyama M, Krinner G, Lvy C, Madec G, Mignot J, Musat I, Swingedouw D, Talandier C (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34:1–26. doi: 10.1007/s00382-009-0640-6 CrossRefGoogle Scholar
  54. Medhaug I, Furevik T (2011) North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation. Ocean Sci Discuss 8:353–396CrossRefGoogle Scholar
  55. Mignot J, Frankignoul C (2005) The variability of the Atlantic meridional overturning circulation, the North Atlantic Oscillation, and the El Nino Southern Oscillation in the Bergen climate model. J Clim 18:2361–2375. doi: 10.1175/JCLI3405.1 CrossRefGoogle Scholar
  56. Mignot J, Frankignoul C (2009) Local and remote impacts of a tropical Atlantic salinity anomaly. Clim Dyn 35:1133–1147. doi: 10.1007/s00382-009-0621-9 CrossRefGoogle Scholar
  57. Mignot J, Ganopolski A, Levermann A (2007) Atlantic subsurface temperatures: response to a shutdown of the overturning circulation and consequences for its recovery. J Clim 20:4884–4898. doi: 10.1175/JCLI4280.1 CrossRefGoogle Scholar
  58. Msadek R, Frankignoul C (2009) Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Clim Dyn 33:45–62. doi: 10.1007/s00382-008-0452-0 CrossRefGoogle Scholar
  59. Olsen SM, Hansen B, Quadfasel D, Østerhus S (2008) Observed and modelled stability of overflow across the greenland-scotland ridge. Nature 455:519–523Google Scholar
  60. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407CrossRefGoogle Scholar
  61. Reynolds RW (1994) Improved global sea surface temperature analyses using optimum interpolation. J Clim 7:929CrossRefGoogle Scholar
  62. Rudels HJ, Friedrich B, Quadfasel D (1999) The Arctic circumpolar boundary current. Deep-Sea Res Part II 46:1023–1062CrossRefGoogle Scholar
  63. Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32:L23710. doi: 10.1029/2005GL024368
  64. Semtner AJJ (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6:379–389CrossRefGoogle Scholar
  65. Sevellec F, Fedorov A (2011a) An interdecadal oscillatory mode of the Atlantic meridional overturning circulation: linear stability analysis in an OGCM. J Clim (in rev)Google Scholar
  66. Sevellec F, Fedorov A (2011b) Optimal surface temperature and salinity perturbations for the Atlantic meridional overturning circulation. J Phys Oceanogr (sub)Google Scholar
  67. Sevellec F, Huck T, Jelloul MB, Grima N, Vialard J, Weaver A (2008) Optimal surface salinity perturbations of the meridional overturning and heat transport in a global ocean general circulation model. J Phys Oceanogr 38:2739–2754CrossRefGoogle Scholar
  68. Sicre M-A, Jacob J, Ezat U, Rousse S, Kissel C, Yiou P, Eirksson J, Knudsen KL, Jansen E, Turon J-L (2008) Decadal variability of sea surface temperatures off north iceland over the last 2000 years. Earth Planet Sci Lett 268:137–142CrossRefGoogle Scholar
  69. Slonosky VC, Mysak LA, Derome J (1997) Linking Arctic sea-ice and atmospheric circulation anomalies on interannual and decadal timescales. Atmos ocean 35(3):333–366CrossRefGoogle Scholar
  70. Sundby S, Drinkwater K (2007) On the mechanisms behind salinity anomaly signals of the northern North Atlantic. Prog Oceanogr 73:190–202CrossRefGoogle Scholar
  71. Sutherland DA, Pickart RS (2008) The east greenland coastal current: Structure, variability, and forcing. Phys Oceanogr 78:58–77Google Scholar
  72. Sutton RT, Hodson DLR (2005) Atlantic ocean forcing of North American and European summer climate. Science 309(5731):115–118. doi: 10.1126/science.110949616 Google Scholar
  73. Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) The impact of global freshwater forcing on the thermohaline circulation: adjustment of North Atlantic convection sites in a CGCM. Clim Dyn 28:291–305CrossRefGoogle Scholar
  74. Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) Quantifying the AMOC feedbacks during a 2xCO2 stabilization experiment with land-ice melting. Clim Dyn 29:521–534CrossRefGoogle Scholar
  75. Swingedouw D, Mignot J, Labetoule S, Guilyardi E (2012) Initialisation and predictability of the amoc over the last 50 years in a climate model. Clim Dyn (in rev)Google Scholar
  76. Tailleux R (2010) Entropy versus ape production: on the buoyancy power input in the oceans energy cycle. Geophys Res Lett 37:L22603. doi: 10.1029/2010GL044962
  77. Tailleux R, Gregory J (2011) Kinetic energy analysis of the response of the Atlantic meridional overturning circulation to CO2-forced climate change. Clim Dyn 37:893–914. doi: 10.1007/s00382-010-0847-6 CrossRefGoogle Scholar
  78. Talley L, Reid J, Robbins P (2003) Data-based meridional overturning streamfunctions for the global oceans. J Clim 16:3213–3226CrossRefGoogle Scholar
  79. Timmermann A, Latif M, Voss R, Grötzner A (1998) North Atlantic interdecadal variability: a coupled air-sea mode. J Clim 11:1906–1932CrossRefGoogle Scholar
  80. Tulloch R, Marshall J (2012) Exploring mechanisms of variability and predictability of Atlantic meridional overturning circulation in two coupled climate models. J Clim. doi: 1.1175/JCLI-D-11-00460.1
  81. Valcke S, Declat D, Redler R, Ritzdorf H, Schoenemeyer T, Vogelsang R (2004) In: Proceedings of the 6th international meeting, vol. 1: high performance computing for computational science. Universidad Politecnica de Valencia, Valencia, Spain., the PRISM coupling and I/O system. VECPAR’04Google Scholar
  82. Vellinga M, Wu P (2004) Low latitude freshwater influence on centennial variability of the Atlantic Thermohaline Circulation. J Clim 17(23):4498–4511CrossRefGoogle Scholar
  83. Woodgate R, Fahrbach E, Rohardt G (1999) Structure and transport of the East Greenland Current at 75°N from moored current meters. J Geophys Res 104:18059–18072CrossRefGoogle Scholar
  84. Zhang R (2008) Coherent surface-surface fingerprint of the Atlantic meridional overturning circulation. Geophys Res Lett 35:L120705. doi: 10.1029/2008GL035463 CrossRefGoogle Scholar
  85. Zhang R (2010) Latitudinal dependence of Atlantic meridional overturning circulation (amoc) variations. Geophys Res Lett 37:L16703. doi: 10.1029/2010GL044474
  86. Zhu X, Jungclaus J (2008) Interdecadal variability of the meridional overturning circulation as an ocean internal mode. Clim Dyn 31:731–741. doi: 10.1007/s00382-008-0383-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institut Mediterrani d’Estudis Avancats, IMEDEA (CSIC-UIB)MallorcaSpain
  2. 2.Laboratoire d’ocanographie et du climat: experimentation et approches numeriquesIPSL/UPMC/CNRS/IRD/MNHNParisFrance
  3. 3.IPSL/LSCE, Gif-sur-Yvette, CEA SaclayOrme des MerisiersFrance

Personalised recommendations