Climate Dynamics

, Volume 40, Issue 5–6, pp 1301–1318 | Cite as

Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium

  • D. Zanchettin
  • A. Rubino
  • D. Matei
  • O. Bothe
  • J. H. Jungclaus


We assess the responses of North Atlantic, North Pacific, and tropical Indian Ocean Sea Surface Temperatures (SSTs) to natural forcing and their linkage to simulated global surface temperature (GST) variability in the MPI-Earth System Model simulation ensemble for the last millennium. In the simulations, North Atlantic and tropical Indian Ocean SSTs show a strong sensitivity to external forcing and a strong connection to GST. The leading mode of extra-tropical North Pacific SSTs is, on the other hand, rather resilient to natural external perturbations. Strong tropical volcanic eruptions and, to a lesser extent, variability in solar activity emerge as potentially relevant sources for multidecadal SST modes’ phase modulations, possibly through induced changes in the atmospheric teleconnection between North Atlantic and North Pacific that can persist over decadal and multidecadal timescales. Linkages among low-frequency regional modes of SST variability, and among them and GST, can remarkably vary over the integration time. No coherent or constant phasing is found between North Pacific and North Atlantic SST modes over time and among the ensemble members. Based on our assessments of how multidecadal transitions in simulated North Atlantic SSTs compare to reconstructions and of how they contribute characterizing simulated multidecadal regional climate anomalies, past regional climate multidecadal fluctuations seem to be reproducible as simulated ensemble-mean responses only for temporal intervals dominated by major external forcings.


Pacific decadal oscillation Atlantic multidecadal oscillation Global surface temperature Last millennium Multidecadal variability Earth system model Modes interaction 



The authors thank Holger Pohlmann for useful comments on early versions of the manuscript, and the three anonymous reviewers for their comments and suggestions. D.Z. acknowledges funding from the ENIGMA project of the Max Planck Society and from the Federal Ministry for Education and Research in Germany (BMBF) through the research program “MiKlip” (FKZ:01LP1158A). D. M. was supported by BMBF through the project “The North Atlantic as a part of the Earth System”. O.B. was supported through the Cluster of Excellence ‘CliSAP’, University of Hamburg, funded through the German Science Foundation (DFG).


  1. Alexander MA (2010) Extratropical air-sea interaction, SST variability and the Pacific Decadal Oscillation (PDO). In: Sun D, Bryan F (eds) Climate dynamics: why does climate vary, AGU Monograph #189, Washington, 123–148Google Scholar
  2. Alexander MA, Bladé I, Newman M, Lanzante JR, Lau N-C, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15:2205–2231CrossRefGoogle Scholar
  3. Andronova NG, Schlesinger ME (2000) Causes of global temperature changes during the 19th and 20th centuries. Geophys Res Lett 27(14):2137–2140CrossRefGoogle Scholar
  4. Biondi F, Gershunov A, Cayan DR (2001) North Pacific decadal variability since 1661. J Clim 14:5–10CrossRefGoogle Scholar
  5. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi: 10.1029/2005JD006548 CrossRefGoogle Scholar
  6. Chan JCL, Zhou W (2005) PDO, ENSO and the early summer monsoon rainfall over South China. Geophys Res Lett 32:L08810. doi: 10.1029/2004GL022015 CrossRefGoogle Scholar
  7. Chang P, Link J, Hong L (1997) A decadal climate variation in the tropical Atlantic Ocean from the thermodynamic air-sea interactions. Nature 385:516–518CrossRefGoogle Scholar
  8. Chelliah M, Bell GD (2004) Tropical multidecadal and interannual climate variations in the NCEP–NCAR reanalysis. J Clim 17:1777–1803CrossRefGoogle Scholar
  9. Chylek P, Folland CK, Dijkstra HA, Lesins G, Dubey MK (2011) Ice-core data evidence for a prominent near 20 year time-scale of the Atlantic multidecadal oscillation. Geophys Res Lett 38:L13704. doi: 10.1029/2011GL047501 CrossRefGoogle Scholar
  10. Colojoară A (2006) Modeling seasonal time series. Surv Math Appl 1:1–12Google Scholar
  11. Cook BI, Seager R, Miller RL (2010) Atmospheric circulation anomalies during two persistent North American droughts: 1932–1939 and 1948–1957. Clim Dyn. doi: 10.1007/s00382-010-0807-1 Google Scholar
  12. Crowley TJ et al (2008) Volcanism and the little ice age. PAGES News 16:22–23Google Scholar
  13. D’Arrigo R, Wilson R (2006) On the Asian expression of the PDO. Int J Climatol 26:1607–1617CrossRefGoogle Scholar
  14. D’Orgeville M, Peltier WR (2007) On the Pacific decadal oscillation and the Atlantic multidecadal oscillation: might they be related? Geophys Res Lett 34:L23705. doi: 10.1029/2007GL031584 CrossRefGoogle Scholar
  15. D’Orgeville M, Peltier WR (2009a) Implications of both statistical equilibrium and global warming simulations with CCSM3. Part I: on the decadal variability in the North Pacific basin. Clim J 22:5277–5297CrossRefGoogle Scholar
  16. D’Orgeville M, Peltier WR (2009b) Implications of both statistical equilibrium and global warming simulations with CCSM3. Part II: on the multidecadal variability in the North Atlantic basin. J Clim 22:5298–5318CrossRefGoogle Scholar
  17. Dai A, Fung IY, Genio ADD (1997) Surface observed global land precipitation variation during 1900–88. J Clim 10:2943–2962CrossRefGoogle Scholar
  18. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676CrossRefGoogle Scholar
  19. Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and the north Pacific during boreal winter since 1900. J Clim 17:3109–3124CrossRefGoogle Scholar
  20. Deser C, Alexander MA, Xie S-P, Phillips AS (2010a) Sea surface temperature variability: patterns and mechanisms. Ann Rev Mar Sci 2:115–143. doi: 10.1146/annurev-marine-120408-151453 CrossRefGoogle Scholar
  21. Deser C, Phillips AS, Alexander MA (2010b) Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett 37:L10701. doi: 10.1029/2010GL043321 CrossRefGoogle Scholar
  22. Di Lorenzo E, Cobb KM, Furtado J, Schneider N, Anderson B, Bracco A, Alexander MA, Vimont D (2010) Central Pacific El Niño and decadal climate change in the North Pacific. Nat Geosci 3(11):762–765. doi: 10.1038/NGEO984 CrossRefGoogle Scholar
  23. Dima M, Lohmann G (2007) A Hemispheric mechanism for the Atlantic multidecadal oscillation. J Clim 20:2706–2719CrossRefGoogle Scholar
  24. Dommenget D, Latif M (2008) Generation of hyper-climate modes. Geophys Res Lett 35:L02706. doi: 10.1029/2007GL031087 CrossRefGoogle Scholar
  25. Elsner JB (2006) Evidence in support of the climatic cange—Atlantic hurricane hypothesis. Geophys Res Lett 33:L16705. doi: 10.1029/2006GL026869 CrossRefGoogle Scholar
  26. Enfield DB, Cid-Serrano L (2006) Projecting the risk of future climate shifts. Int J Climatol 26:885–895CrossRefGoogle Scholar
  27. Enfield DB, Cid-Serrano L (2010) Secular and multidecadal warmings in the North Atlantic and their relationships with major hurricane activity. Int J Climatol 30(2):174–184Google Scholar
  28. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080CrossRefGoogle Scholar
  29. Feng S et al (2011) Influence of Atlantic sea surface temperature on persistent drought in North America. Clim Dyn 37:569–586CrossRefGoogle Scholar
  30. Folland CK, Renwick JA, Salinger MJ, Mullan AB (2002) Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys Res Lett 29:1643. doi: 10.1029/2001GL014201 Google Scholar
  31. Frankcombe LM, Dijkstra HA (2011) The role of Atlantic‐Arctic exchange in North Atlantic multidecadal climate variability. Geophys Res Lett 38:L16603. doi: 10.1029/2011GL048158 CrossRefGoogle Scholar
  32. Franks SW (2002) Identification of a change in climate state using regional flood data. Hydrol Earth Syst Sci 6(1):11–16CrossRefGoogle Scholar
  33. Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293(5529):474–479. doi: 10.1126/science.1060040 CrossRefGoogle Scholar
  34. Graf HF, Zanchettin D (2012) Central Pacific El Niño, the ‘‘subtropical bridge’’ and Eurasian climate. J Geophys Res 117:D01102. doi: 10.1029/2011JD016493 CrossRefGoogle Scholar
  35. Graham NE, Ammann CM, Fleitmann D, Cobb KM, Luterbacher J (2010) Support for global climate reorganization during the “Medieval Climate Anomaly”. Clim Dyn. doi: 10.1007/s00382-010-0914-z Google Scholar
  36. Gray ST, Graumlich LJ, Betancourt JL, Pederson GT (2004) A tree-ring based reconstruction of the Atlantic multidecadal oscillation since 1567 AD. Geophys Res Lett 31:L12205CrossRefGoogle Scholar
  37. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–566CrossRefGoogle Scholar
  38. Grosfeld K, Lohmann G, Rimbu N (2008) The impact of Atlantic and Pacific Ocean sea surface temperature anomalies on the North Atlantic multidecadal variability. Tellus. doi: 10.1111/j.1600-0870.2008.00304.x Google Scholar
  39. Gu D, Philander SGH (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807CrossRefGoogle Scholar
  40. Guilyardi E (2006) El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26:329–348CrossRefGoogle Scholar
  41. Hoerling MP, Hurrell JW, Xu T (2001) Tropical origins for recent North Atlantic climate change. Science 292:90–92CrossRefGoogle Scholar
  42. Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Niño. Nat Geosci 2(1):32–36. doi: 10.1038/ngeo381 CrossRefGoogle Scholar
  43. Janicot S, Moron V, Fontaine B (1996) Sahel droughts and ENSO dynamics. Geophys Res Lett 23:515–518CrossRefGoogle Scholar
  44. Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18:4013–4031CrossRefGoogle Scholar
  45. Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19:3952–3972CrossRefGoogle Scholar
  46. Jungclaus JH et al (2010) Climate and carbon-cycle variability over the last millennium. Clim Past 6:723–737. doi: 10.5194/cp-6-723-2010 CrossRefGoogle Scholar
  47. Kamenos NA (2010) North Atlantic summers have warmed more than winters since 1353, and the response of marine zooplankton. Proc Natl Acad Sci 107–52:22442–22447. doi: 10.1073/pnas.1006141107 CrossRefGoogle Scholar
  48. Kaplan A, Cane M, Kushnir Y, Clement A, Blumenthal M, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103:18567–18589CrossRefGoogle Scholar
  49. Karspeck AR, Seager R, Cane MA (2004) Predictability of tropical Pacific decadal variability in an intermediate model. J Clim 17:2842–2850CrossRefGoogle Scholar
  50. Keily G (1999) Climate changes in Ireland from precipitation and streamflow observations. Adv Wat Res 23(2): 141–151Google Scholar
  51. Kelly KA et al (2010) Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio extension. J Clim 23:5644–5667CrossRefGoogle Scholar
  52. Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1986CrossRefGoogle Scholar
  53. Kleeman R, McCreary JP, Klinger BA (1999) A mechanism for generating ENSO decadal variability. Geophys Res Lett 26:1743–1746CrossRefGoogle Scholar
  54. Knight J, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi: 10.1029/1005GL024233 CrossRefGoogle Scholar
  55. Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett 33:L17706. doi: 10.1029/2006GL026242 CrossRefGoogle Scholar
  56. Knudsen MF, Seidenkrantz M-S, Jacobsen BH, Kuijpers A (2011) Tracking the Atlantic multidecadal oscillation through the last 8,000 years. Nat Comm 2:178. doi: 10.1038/ncomms1186 CrossRefGoogle Scholar
  57. Krishnan R, Sugi M (2003) Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Clim Dyn 21:233–242. doi: 10.1007/s00382-003-0330-8 CrossRefGoogle Scholar
  58. Kwon Y-O et al (2010) Role of Gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere-ocean interaction: a review. J Clim 23:3249–3281CrossRefGoogle Scholar
  59. Latif M (2001) Tropical Pacific/Atlantic Ocean interactions at multi-decadal time scales. Geophys Res Lett 28(3):539–542. doi: 10.1029/2000GL011837 CrossRefGoogle Scholar
  60. Latif M, Barnett TP (1996) Decadal climate variability over the North Pacific and North America: dynamics and predictability. J Clim 9:2407–2423CrossRefGoogle Scholar
  61. Latif M, Arpe K, Roeckner E (2000) Oceanic control of decadal North Atlantic sea level pressure variability in winter. Geophys Res Lett 27:727–730CrossRefGoogle Scholar
  62. Latif M, Böning CW, Willebrand J, Biastoch A, Alvarez-Garcia F, Keenlyside N Pohlmann H (2007): Decadal to multidecadal variability of the Atlantic MOC: mechanisms and predictability. In: Ocean circulation: mechanisms and impacts, geophysical monograph series, vol 173. American Geophysical Union, pp 140–166. doi: 10.1029/173GM11
  63. Lohmann G, Rimbu N, Dima M (2004) Climate signature of solar irradiance variations: analysis of long-term instrumental and historical data. Int J Clim 24:1045–1056. doi: 10.1002/joc.1054 CrossRefGoogle Scholar
  64. Mann ME, Emanuel KA (2006) Atlantic hurricane trends linked to climate change. Eos Trans AGU 87(24):233–244CrossRefGoogle Scholar
  65. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260CrossRefGoogle Scholar
  66. Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58:35–44CrossRefGoogle Scholar
  67. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Met Soc 78:1069–1079CrossRefGoogle Scholar
  68. Matei D, Keenlyside N, Latif M, Jungclaus JH (2008) Subtropical forcing of tropical Pacific climate and decadal ENSO modulation. J Clim 21:4691–4709. doi: 10.1175/2008JCLI2075.1 CrossRefGoogle Scholar
  69. Mestas-Nuñez AM, Enfield DB (1999) Rotated global modes of non-ENSO sea surface temperature variability. J Clim 12:2734–2746CrossRefGoogle Scholar
  70. Mitchell JM et al. (1966) Climatic change. In: WMO Technical Note No. 79, World Meteorological OrganizationGoogle Scholar
  71. McCabe GJ, Palecki MA et al (2004) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc Natl Acad Sci 101(12):4136–4141CrossRefGoogle Scholar
  72. McCabe G, Betancourt J, Gray S, Palecki M, Hidalgo H (2008) Associations of multi-decadal sea-surface temperature variability with US drought. Quat Int 188:31–40CrossRefGoogle Scholar
  73. Miller AJ, Chai F, Chiba S, Moisan JR, Neilson DJ (2004) Decadal-scale climate and ecosystem interactions in the North Pacific Ocean. J Oceanogr 60(1):163–188. doi: 10.1023/B:JOCE.0000038325.36306.95 CrossRefGoogle Scholar
  74. Müller WA, Roeckener E (2008) ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM. Clim Dyn 31:533–549. doi: 10.1007/s00382-007-0357-3 CrossRefGoogle Scholar
  75. Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific decadal oscillation. J Clim 16:3853–3857CrossRefGoogle Scholar
  76. Oglesby RJ, Feng S, Hu Q, Rowel C (2011) Medieval drought in North America: the role of the Atlantic multidecadal oscillation. PAGES 19–1:18–20Google Scholar
  77. Oshima K, Tanimoto Y (2009) An evaluation of reproducibility of the Pacific decadal oscillation in the CMIP3 simulations. J Meteorol Soc Jpn 87(4):755–770. doi: 10.2151/jmsj.87.755 CrossRefGoogle Scholar
  78. Otterå OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci. doi: 10.1038/NGEO995 Google Scholar
  79. Polonskii AB (2008) Atlantic multidecadal oscillation and its manifestations in the Atlantic-European region. Phys Oceanogr 18(4):227–236CrossRefGoogle Scholar
  80. Raddatz TJ et al (2007) Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century? Clim Dyn 29:565–574CrossRefGoogle Scholar
  81. Roeckner E et al (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791CrossRefGoogle Scholar
  82. Saenger C, Cohen AL, Oppo DW, Halley RB, Carilli JE (2009) Surface temperature trends and variability in the low-latitude North Atlantic since 1552. Nat Geosci 2:492–495. doi: 10.1038/ngeo552 CrossRefGoogle Scholar
  83. Schmidt GA et al (2011) Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1. 0). Geosci Model Dev 4:33–45. doi: 10.5194/gmd-4-33-2011 CrossRefGoogle Scholar
  84. Schneider N, Cornuelle BD (2005) The forcing of the Pacific decadal oscillation. J Clim 18:4355–4373CrossRefGoogle Scholar
  85. Sen Roy S, Goodrich GB, Balling RC Jr (2003) Influence of El Niño/southern oscillation, Pacific decadal oscillation, and local sea-surface temperature anomalies on peak season monsoon precipitation in India. Clim Res 25:171–178CrossRefGoogle Scholar
  86. Shakun JD, Shaman J (2009) Tropical origins of north and south Pacific decadal variability. Geophys Res Lett 36:L19711. doi: 10.1029/2009GLO40313 CrossRefGoogle Scholar
  87. Strong C, Magnusdottir G (2008) How Rossby wave breaking over the Pacific forces the North Atlantic Oscillation. Geophys Res Lett 35:L10706. doi: 10.1029/2008GL033578
  88. Strong C, Magnusdottir G (2009) The role of tropospheric Rossby wave breaking in the Pacific decadal oscillation. J Clim 22(7):1819–1833. doi: 10.1175/2008jcli2593.1 CrossRefGoogle Scholar
  89. Sutton RT, Hodson DLR (2003) Influence of the Ocean on North Atlantic climate variability 1871–1999. J Clim 16:3296–3313CrossRefGoogle Scholar
  90. Swingedouw D, Terray L, Cassou C, Voldoire A, Salar-Mélia D, Servonnat J (2010) Natural forcing of climate during the last millennium: fingerprint of solar variability. Clim Dyn. doi: 10.1007/s00382-010-0803-5 Google Scholar
  91. Thompson DWJ, Wallace JM, Jones PD, Kennedy JJ (2009) Identifying signatures of natural climate variability in time series of global-mean surface temperature: methodology and insights. J Clim 22:6120–6141CrossRefGoogle Scholar
  92. Timmermann A, Jin F-F (2002) A nonlinear mechanism for decadal El nino amplitude changes. Geophys Res Lett. doi: 10.1029/2001GL013369 Google Scholar
  93. Timmreck C et al (2010) Aerosol size confines climate response to volcanic super-eruptions. Geophys Res Lett. doi: 10.1029/2010GL045464 Google Scholar
  94. Timmreck C, Graf H-F, Zanchettin D, Hagemann S, Kleinen T, Krüger K (2011) Climate response to the Toba super-eruption: regional changes. Quat Int. doi: 10.1016/j.quaint.2011.10.008 Google Scholar
  95. Trenberth KE, Hurrell JW (1994) Decadal atmosphere–ocean variations in the Pacific. Clim Dyn 9:303–319CrossRefGoogle Scholar
  96. Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704. doi: 10.1029/2006GL026894 CrossRefGoogle Scholar
  97. Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, CambridgeGoogle Scholar
  98. Vieira LEA, Solanki SK, Krivova NA, Usoskin I (2011) Evolution of the solar irradiance during the Holocene. Astron Astrophys 531(A6). doi: 10.1051/0004-6361/201015843
  99. Vimont DJ (2005) The contribution of the interannual ENSO cycle to the spatial structure of decadal ENSO-like variability. J Clim 18(12):2080–2092CrossRefGoogle Scholar
  100. Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926CrossRefGoogle Scholar
  101. Wang C, Lee S-K, Enfield DB (2008) Climate response to anomalously large and small Atlantic warm pools in summer. J Clim 21(11):2437–2450CrossRefGoogle Scholar
  102. Wetzel P, Winguth A, Maier-Reimer E (2005) Sea-to-air CO2 fluxes from 1948 to 2003. Glob Biogeochem Cycles 19 GB2005. doi: 10.1029/2004GB002339
  103. Wu Z, Huang NE, Wallace JM, Smoliak BV, Chen X (2011) On the time-varying trend in global-mean surface temperature. Clim Dyn 37:759–773. doi: 10.1007/s00382-011-1128-8 CrossRefGoogle Scholar
  104. Wyatt MG, Kravtsov S, Tsonis AA (2011) Atlantic multidecadal oscillation and Northern Hemisphere’s climate variability. Clim Dyn. doi: 10.1007/s00382-011-1071-8 Google Scholar
  105. Zanchettin D, Rubino A, Traverso P, Tomasino M (2008a) Impact of variations in solar activity on hydrological decadal patterns in northern Italy. J Geophys Res 113:D12102. doi: 10.1029/2007JD009157 CrossRefGoogle Scholar
  106. Zanchettin D, Franks SW, Traverso P, Tomasino M (2008b) On ENSO impacts on European wintertime rainfalls and their modulation by the NAO and the Pacific multidecadal variability described through the PDO index. Int J Climatol. doi: 10.1002/joc.1601 Google Scholar
  107. Zanchettin D, Rubino A, Jungclaus JH (2010) Intermittent multidecadal-to-centennial fluctuations dominate global temperature evolution over the last millennium. Geophys Res Lett 37:L14702. doi: 10.1029/2010GL043717 CrossRefGoogle Scholar
  108. Zanchettin D, Timmreck C, Graf H-F, Rubino A, Lorenz S, Lohmann K, Krueger K, Jungclaus JH (2011) Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Clim Dyn. doi: 10.1007/s00382-011-1167-1 Google Scholar
  109. Zhang R, Delworth TL (2007) Impact of the Atlantic Multidecadal Oscillation on North Pacific climate variability. Geophys Res Lett 34:L23708. doi: 10.1029/2007GL031601 CrossRefGoogle Scholar
  110. Zhang R, Delworth TL, Held IM (2007) Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys Res Lett 34:L02709. doi: 10.1029/2006GL028683 CrossRefGoogle Scholar
  111. Zhong Y, Liu Z (2009) On the mechanism of Pacific multidecadal climate variability in CCSM3: the role of the subpolar North Pacific Ocean. J Phys Oceanogr 39:2052–2076CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • D. Zanchettin
    • 1
  • A. Rubino
    • 2
  • D. Matei
    • 1
  • O. Bothe
    • 3
    • 1
  • J. H. Jungclaus
    • 1
  1. 1.Ocean in the Earth System DepartmentMax Planck Institute for MeteorologyHamburgGermany
  2. 2.Department of Environmental Sciences, Informatics and StatisticsUniversity of VeniceVeniceItaly
  3. 3.University of HamburgHamburgGermany

Personalised recommendations