Climate Dynamics

, Volume 39, Issue 5, pp 1169–1181 | Cite as

Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation

  • Guoxiong Wu
  • Yimin Liu
  • Buwen Dong
  • Xiaoyun Liang
  • Anmin Duan
  • Qing Bao
  • Jingjing Yu


Numerical experiments with different idealized land and mountain distributions are carried out to study the formation of the Asian monsoon and related coupling processes. Results demonstrate that when there is only extratropical continent located between 0 and 120°E and between 20/30°N and the North Pole, a rather weak monsoon rainband appears along the southern border of the continent, coexisting with an intense intertropical convergence zone (ITCZ). The continuous ITCZ surrounds the whole globe, prohibits the development of near-surface cross-equatorial flow, and collects water vapor from tropical oceans, resulting in very weak monsoon rainfall. When tropical lands are integrated, the ITCZ over the longitude domain where the extratropical continent exists disappears as a consequence of the development of a strong surface cross-equatorial flow from the winter hemisphere to the summer hemisphere. In addition, an intense interaction between the two hemispheres develops, tropical water vapor is transported to the subtropics by the enhanced poleward flow, and a prototype of the Asian monsoon appears. The Tibetan Plateau acts to enhance the coupling between the lower and upper tropospheric circulations and between the subtropical and tropical monsoon circulations, resulting in an intensification of the East Asian summer monsoon and a weakening of the South Asian summer monsoon. Linking the Iranian Plateau to the Tibetan Plateau substantially reduces the precipitation over Africa and increases the precipitation over the Arabian Sea and the northern Indian subcontinent, effectively contributing to the development of the South Asian summer monsoon.


Rainfall pattern Tibetan Plateau thermal forcing Positive feedback mechanism Vorticity balance Global warming 



This study was jointly supported by the MOST Programme (2010CB950403 and 2012CB417200), and the NSFC Projects (40925015, 40875034). BD was supported by the U.K. National Centre for Atmospheric Science-Climate (NCAS-Climate). We thank the anonymous reviewers for their valuable suggestions on the improvement of the manuscript.


  1. Bordoni S, Schneider T (2008) Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat Geosci 1:515–519. doi:10.1038/ngeo248 CrossRefGoogle Scholar
  2. Bordoni S, Schneider T (2010) Regime transitions of steady and time-dependent hadley circulations: comparison of axisymmetric and eddy-permitting simulations. J Atmos Sci 67:1643–1654CrossRefGoogle Scholar
  3. Chen TC (2003) Maintenance of summer monsoon circulations: a planetary-scale perspective. J Clim 16(12):2022–2037 doi:10.1175/1520-0442(2003)016<2022:MOSMCA>2.0.CO;2 Google Scholar
  4. Chou C (2003) Land-sea heating contrast in an idealized Asian summer monsoon. Clim Dyn 21(1):11–25. doi:10.1007/s00382-003-0315-7 CrossRefGoogle Scholar
  5. Dirmeyer PA (1998) Land-sea geometry and its effect on monsoon circulations. J Geophys Res 103(D10)(10):11555–11572. doi:10.1029/98JD00802 CrossRefGoogle Scholar
  6. Duan AM, Wu GX (2008) Weakening trend in the atmospheric heating source over the Tibetan Plateau during recend decades. Part I: observations. J Clim 21:3150–3164CrossRefGoogle Scholar
  7. Duan AM, Wu GX (2009) Weakening trend in the atmospheric heating source over the Tibetan Plateau during recend decades. Part II: connection with climate warming. J Clim 22:4197–4212CrossRefGoogle Scholar
  8. Duan K, Yao T, Thompson LG (2006) Response of monsoon precipitation in the Himalayas to global warming. J Geophys Res 111(19D19):D19110. doi:10.1029/2006JD007084 CrossRefGoogle Scholar
  9. Fiorino M (2000) AMIP II sea surface temperature and sea ice concentration observations. PCMDI Report, Lawrence Livermore National LaboratoryGoogle Scholar
  10. Flohn H (1957) Large-scale aspects of the “summer monsoon” in South and East Asia. J Meteorol Soc Jpn 75:180–186Google Scholar
  11. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J Roy Meteor Soc 106(449):447–662. doi:10.1002/qj.49710644905 CrossRefGoogle Scholar
  12. Holton JR (2004) An introduction to dynamic meteorology. Elsevier Academic Press, Amsterdam, p 535Google Scholar
  13. Hsu CJ, Plumb RA (2000) Nonaxisymmetric thermally driven circulations and upper-tropospheric monsoon dynamics. J Atmos Sci 57(9):1255–1276. doi:10.1175/1520-0469(2000)057<1255:NTDCAU>2.0.CO;2 CrossRefGoogle Scholar
  14. Kucharski F, Bracco A, Barimalala R, Yoo JH (2010) Contribution of the east-west thermal heating contrast to the South Asian monsoon and consequences for its variability. Clim Dyn 37:721–735. doi:10.1007/s00382-010-0858-3 Google Scholar
  15. Liang XY, Liu YM, Wu GX (2006) Roles of tropical and subtropical land-sea distribution and the Qinghai-Xizang Plateau in the formation of the Asian summer monsoon. Chin J Geophys-Ch 49(4):983–992 (in Chinese)Google Scholar
  16. Liu H, Wu GX (1997) Impacts of land surface on climate of July and onset of summer monsoon: a study with an AGCM plus SSiB. Adv Atmo- spheric Sci 14:289–308CrossRefGoogle Scholar
  17. Liu X, Yin ZY (2002) Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr Palaeocl 183(3–4):223–245. doi:10.1016/S0031-0182(01)00488-6 CrossRefGoogle Scholar
  18. Liu Y, Wu G, Ren R (2004) Relationship between the subtropical anticyclone and diabatic heating. J Clim 17(4):682–698. doi:10.1175/1520-0442(2004)017<0682:RBTSAA>2.0.CO;2 CrossRefGoogle Scholar
  19. Liu Y, Hoskins B, Blackburn M (2007) Impact of the Tibetan orography and heating on the summer flow over Asia. J Meteorol Soc Jpn 85B:1–19. doi:10.2151/jmsj.85B.1 CrossRefGoogle Scholar
  20. Ramage CS (1971) Monsoon meteorology. Academic Press, New York, p 296Google Scholar
  21. Schneider T, Bordoni S (2008) Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J Atmos Sci 65:915–934CrossRefGoogle Scholar
  22. Wallace JM, Hobbs PV (1977) Atmospheric Science: an introductory survey. Academic Press, New York Google Scholar
  23. Wu G, Liu Y (2000) Thermal adaptation, overshooting, dispersion, and subtropical anticyclone Part I: Thermal adaptation and overshooting. Chin J Atmos Sci 24(4):433–446 (in Chinese). doi:10.3878/j.issn.1006-9895.2000.04.01
  24. Wu G, Liu Y (2003) Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation. Geophys Res Lett 30(5):1201. doi:10.1029/2002GL016209 CrossRefGoogle Scholar
  25. Wu T, Liu P, Wang Z, Liu Y, Yu R, Wu G (2003) The performance of atmospheric component model R42L9 of GOALS/LASG. Adv Atmos Sci 20(5):726–742. doi:10.1007/BF02915398 CrossRefGoogle Scholar
  26. Wu G, Liu Y, Wang T, Wan R, Liu X, Li W, Wang Z, Zhang Q, Duan A, Liang X (2007) The influence of the mechanical and thermal forcing of the Tibetan Plateau on the Asian climate. J Hydrometeorl 8(4):770–789. doi:10.1175/JHM609.1 CrossRefGoogle Scholar
  27. Wu GX, Liu Y, Zhu X, Li W, Ren R, Duan A, Liang X (2009) Multi-scale forcing and the formation of subtropical desert and monsoon. Ann Geophys 27(9):3631–3644. doi:10.5194/angeo-27-3631-2009 CrossRefGoogle Scholar
  28. Xu Z, Fu C, Qian Y (2009) Relative roles of land-sea distribution and orography in Asian monsoon intensity. J Atmos Sci 66(9):2714–2729CrossRefGoogle Scholar
  29. Xue Y, Sellers PJ, Kinter JJ, Shukla J (1991) A simplified biosphere model for global climate studies. J Clim 4:345–364CrossRefGoogle Scholar
  30. Yanai M, Wu GX (2006) Effects of the Tibetan Plateau. In: Wang B (ed) The Asian monsoon. Springer, Berlin, pp 513–549. doi:10.1007/3-540-37722-0_13
  31. Yang K, Guo XF, He J, Qin J, Koike T (2011) On the climatology and trend of the atmospheric heat source over the Tibetan Plateau: An experiments-supported revisit. J Clim 24:1525–1541CrossRefGoogle Scholar
  32. Ye DZ, Wu GX (1998) The role of the heat source of the Tibetan Plateau in the general circulation. Meteorol Atmos Phys 67(1–4):181–198. doi:10.1007/BF01277509 CrossRefGoogle Scholar
  33. Yeh TC, Lo SW, Chu PC (1957) The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding. Acta Meteor Sinica 28:108–121 (in Chinese)Google Scholar
  34. Young JA (1987) Physics of monsoon: the current view. In: Fein JS, Stephens PL (eds) Monsoons. Wiley, Washington D C, pp 211–243Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Guoxiong Wu
    • 1
  • Yimin Liu
    • 1
  • Buwen Dong
    • 2
  • Xiaoyun Liang
    • 3
  • Anmin Duan
    • 1
  • Qing Bao
    • 1
  • Jingjing Yu
    • 4
  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of Meteorology, National Centre for Atmospheric ScienceUniversity of ReadingReadingUK
  3. 3.National Climate CenterChina Meteorological AdministrationBeijingChina
  4. 4.National Meteorological Information CenterChina Meteorological AdministrationBeijingChina

Personalised recommendations