Climate Dynamics

, Volume 40, Issue 9–10, pp 2311–2330 | Cite as

Atmospheric response to the North Atlantic Ocean variability on seasonal to decadal time scales

  • Guillaume Gastineau
  • Fabio D’Andrea
  • Claude Frankignoul


The NCEP twentieth century reanalyis and a 500-year control simulation with the IPSL-CM5 climate model are used to assess the influence of ocean-atmosphere coupling in the North Atlantic region at seasonal to decadal time scales. At the seasonal scale, the air-sea interaction patterns are similar in the model and observations. In both, a statistically significant summer sea surface temperature (SST) anomaly with a horseshoe shape leads an atmospheric signal that resembles the North Atlantic Oscillation (NAO) during the winter. The air-sea interactions in the model thus seem realistic, although the amplitude of the atmospheric signal is half that observed, and it is detected throughout the cold season, while it is significant only in late fall and early winter in the observations. In both model and observations, the North Atlantic horseshoe SST anomaly pattern is in part generated by the spring and summer internal atmospheric variability. In the model, the influence of the ocean dynamics can be assessed and is found to contribute to the SST anomaly, in particular at the decadal scale. Indeed, the North Atlantic SST anomalies that follow an intensification of the Atlantic meridional overturning circulation (AMOC) by about 9 years, or an intensification of a clockwise intergyre gyre in the Atlantic Ocean by 6 years, resemble the horseshoe pattern, and are also similar to the model Atlantic Multidecadal Oscillation (AMO). As the AMOC is shown to have a significant impact on the winter NAO, most strongly when it leads by 9 years, the decadal interactions in the model are consistent with the seasonal analysis. In the observations, there is also a strong correlation between the AMO and the SST horseshoe pattern that influences the NAO. The analogy with the coupled model suggests that the natural variability of the AMOC and the gyre circulation might influence the climate of the North Atlantic region at the decadal scale.


Air-sea interactions North Atlantic AMOC Decadal variability 



The research leading to these results has received funding from the European Community’s 7th framework programme (FP7/2007-2013) under grant agreement No. GA212643 (THOR: “Thermohaline Overturning—at Risk”, 2008-2012). We are grateful to C. Marini who provided the HadISST-LIM data. We also thank J. Mignot, D. Swingedouw and two anonymous reviewers for their useful comments and suggestions.


  1. Alexander M, Scott J (2002) The influence of ENSO on air-sea interaction in the Atlantic. Geophys Res Lett 29(14):46. doi: 10.1029/2001GL014347 Google Scholar
  2. Barston AG, Lizevey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Wea Rev 115:1083–1126CrossRefGoogle Scholar
  3. Bellucci A, Gualdi S, Scoccimarro E, Navarra A (2008) NAO-ocean circulation interactions in a coupled general circulation model. Clim Dyn 31(7):759–777CrossRefGoogle Scholar
  4. Bretherton C, Widmann M, Dymnikov V, Wallace J, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Climate 12(7):1990–2009CrossRefGoogle Scholar
  5. Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Climate 5(6):541–560CrossRefGoogle Scholar
  6. Cassou C, Deser C, Alexander MA (2007) Investigating the impact of reemerging sea surface temperature anomalies on the winter atmospheric circulation over the North Atlantic. J Climate 20(14):3510–3526CrossRefGoogle Scholar
  7. Cayan DR (1992) Latent and sensible heat flux anomalies over the northern oceans: the connection to monthly atmospheric circulation. J Climate 5(4):354–369CrossRefGoogle Scholar
  8. Chelton D, Xie S-P (2010) Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography 23(4):52–69CrossRefGoogle Scholar
  9. Collins M et al (2006) Interannual to decadal climate predictability in the North Atlantic: a multimodel-ensemble study. J Climate 19(7):1195–1203CrossRefGoogle Scholar
  10. Compo GP, Sardeshmukh PD (2010) Removing ENSO-related variations from the climate record. J Climate 23(8):1957–1978CrossRefGoogle Scholar
  11. Compo GP et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28CrossRefGoogle Scholar
  12. Cunningham SA et al (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5N. Science 317(5840):935–938CrossRefGoogle Scholar
  13. Czaja A, Frankignoul C (1999) Influence of the North Atlantic SST on the atmospheric circulation. Geophys Res Lett 26:2969–2972CrossRefGoogle Scholar
  14. Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic oscillation. J Climate 15(6):606–623CrossRefGoogle Scholar
  15. Czaja A, Marshall J (2001) Observations of atmosphere-ocean coupling in the North Atlantic. Q J R Meteorol Soc 127:1893–1916CrossRefGoogle Scholar
  16. Czaja A, van der Vaart P, Marshall J (2002) A diagnostic study of the role of remote forcing in tropical Atlantic variability. J Climate 15(22):3280–3290CrossRefGoogle Scholar
  17. Danabasoglu G (2008) On multidecadal variability of the Atlantic meridional overturning circulation in the community climate system model version 3. J Climate 21(21):5524–5544CrossRefGoogle Scholar
  18. D’Andrea F, Czaja A, Marshall J (2005) Impact of anomalous ocean heat transport on the North Atlantic oscillation. J Climate 18(23):4955–4969CrossRefGoogle Scholar
  19. Delworth TL, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Climate 13(9):1481–1495CrossRefGoogle Scholar
  20. Deser C, Alexander MA, Xie S, Phillips AS (2009) Sea surface temperature variability: patterns and mechanisms. Annu Rev Marine Sci 2(1):115–143CrossRefGoogle Scholar
  21. Deser C, Tomas RA, Peng S (2007) The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J Climate 20(18):4751–4767CrossRefGoogle Scholar
  22. Deshayes J, Frankignoul C (2008) Simulated variability of the circulation in the North Atlantic from 1953 to 2003. J Climate 21(19):4919–4933CrossRefGoogle Scholar
  23. Dong B, Sutton RT, Scaife AA (2006) Multidecadal modulation of El Niño Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res Lett 33(8):L08 705. doi: 10.1029/2006GL025766 CrossRefGoogle Scholar
  24. Eden C, Greatbatch RJ (2003) A damped decadal oscillation in the North Atlantic climate system. J Climate 16(24):4043–4060CrossRefGoogle Scholar
  25. Eden C, Willebrand J (2001) of interannual to decadal variability of the North Atlantic circulation. J Climate 14(10):2266–2280CrossRefGoogle Scholar
  26. Enfield DB, Cid-Serrano L (2010) Secular and multidecadal warmings in the North Atlantic and their relationships with major hurricane activity. Int J Climatol 30(2):174–184Google Scholar
  27. Feldstein SB (2000) The timescale, power spectra, and climate noise properties of teleconnection patterns. J Climate 13(24):4430–4440CrossRefGoogle Scholar
  28. Folland CK, Knight J, Linderholm HW, Fereday D, Ineson S, Hurrell JW (2009) The summer North Atlantic oscillation: past, present, and future. J Climate 22(5):1082–1103CrossRefGoogle Scholar
  29. Frankignoul C, Chouaib N, Liu Z (2011) Estimating the observed atmospheric response to SST anomalies: maximum covariance analysis, generalized equilibrium feedback assessment, and maximum response estimation. J Climate 24(10):2523–2539. doi: 10.1175/2010JCLI3696.1 CrossRefGoogle Scholar
  30. Frankignoul C, Hasselmann K (1977) Stochastic climate models. Part II: application to sea-surface temperature anomalies and thermocline variability. Tellus 29(4):289–305CrossRefGoogle Scholar
  31. Frankignoul C, Kestenare E (2002) The surface heat flux feedback. Part I: estimates from observations in the Atlantic and the North Pacific. Clim Dyn 19:633–647CrossRefGoogle Scholar
  32. Frankignoul C, Kestenare E (2005) Air-sea interactions in the tropical Atlantic: a view based on lagged rotated maximum covariance analysis. J Climate 18(18):3874–3890CrossRefGoogle Scholar
  33. Gastineau G, Frankignoul C (2011) Cold-season atmospheric response to the natural variability of the Atlantic meridional overturning circulation. Clim Dyn, in press, 1–21. doi: 10.1007/s00382-011-1109-y
  34. Gray ST, Graumlich LJ, Betancourt JL, Pederson GT (2004) A tree-ring based reconstruction of the Atlantic multidecadal oscillation since 1567 AD. Geophys Res Lett 31(12):L12 205. doi: 10.1029/2004GL019932 CrossRefGoogle Scholar
  35. Guan B, Nigam S (2009) Analysis of Atlantic SST variability factoring interbasin links and the secular trend: clarified structure of the Atlantic multidecadal oscillation. J Climate 22(15):4228–4240CrossRefGoogle Scholar
  36. Guemas V, Codron F (2011) Differing impacts of resolution changes in latitude and longitude on the midlatitudes in the LMDZ atmospheric GCM. J Climate 24(22):5831–5849CrossRefGoogle Scholar
  37. Hodson D, Sutton R, Cassou C, Keenlyside N, Okumura Y, Zhou T (2010) Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature: a multimodel comparison. Clim Dyn 34:1041–1058CrossRefGoogle Scholar
  38. Hurrell J, Kushnir Y, Visbeck M, Ottersen G (2003) An overview of the North Atlantic oscillation. The North Atlantic oscillation, climatic significance and environmental impact. AGU Geophys Monogr 134:1–35CrossRefGoogle Scholar
  39. Keenlyside N, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88CrossRefGoogle Scholar
  40. Knight J, Allan R, Folland C, Vellinga M, Mann M (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20 708. doi: 1029/2005GL024 233 CrossRefGoogle Scholar
  41. Krinner G et al (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem Cycles 19(1):GB1015. doi: 10.1029/2003GB002199 CrossRefGoogle Scholar
  42. Kushnir Y (1994) Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J Climate 7(1):141–157CrossRefGoogle Scholar
  43. Madec G (2008) NEMO ocean engine. Tech. rep., Note du Pole de modelisation, Institut Pierre-Simon Laplace (IPSL) No 27Google Scholar
  44. Magnusdottir G, Deser C, Saravanan R (2004) The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: main features and storm track characteristics of the response. J Climate 17(5):857–876CrossRefGoogle Scholar
  45. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392(6678):779–787CrossRefGoogle Scholar
  46. Marini C (2011) On the causes and effects of the Atlantic Meridional Overturning Circulation. Ph.D. dissertation, LOCEAN-IPSL, Université Pierre et Marie CurieGoogle Scholar
  47. Marshall J, Johnson H, Goodman J (2001) A study of the interaction of the North Atlantic oscillation with ocean circulation. J Climate 14(7):1399–1421CrossRefGoogle Scholar
  48. Maury P, Lott F, Guez L, Duvel J-P (2012) Tropical variability and stratospheric equatorial waves in the IPSLCM5 model. Clim Dyn. doi: 10.1007/s00382-011-1273-0 Google Scholar
  49. Medhaug I, Furevik T (2011) North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation. Ocean Sci 7:389–404. doi: 10.5194/os-7-389-2011 CrossRefGoogle Scholar
  50. Msadek R, Frankignoul C (2009) Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Clim Dyn 33:45–62CrossRefGoogle Scholar
  51. Munoz E, Kirtman B, Weijer W (2011) Varied representation of the Atlantic meridional overturning across multidecadal ocean reanalyses. Deep Sea Res II 58(17–18):1848–1857CrossRefGoogle Scholar
  52. OrtizBeviá MJ, Pérez-González I, Alvarez-García FJ, Gershunov A (2010) Nonlinear estimation of El Niño impact on the North Atlantic winter. J Geophys Res 115:D21 123. doi: 10.1029/2009JD013387 CrossRefGoogle Scholar
  53. Park S, Deser C, Alexander MA (2005) Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans. J Climate 18(21):4582–4599CrossRefGoogle Scholar
  54. Peng S, Robinson WA, Li S (2002) North Atlantic SST forcing of the NAO and relationships with intrinsic hemispheric variability. Geophys Res Lett 29(8):1276. doi: 10.1029/2001GL014043 CrossRefGoogle Scholar
  55. Peng S, Robinson WA, Li S (2003) Mechanisms for the NAO responses to the North Atlantic SST tripole. J Climate 16(12):1987–2004CrossRefGoogle Scholar
  56. Peng S, Whitaker JS (1999) Mechanisms determining the atmospheric response to midlatitude SST anomalies. J Climate 12(5):1393–1408CrossRefGoogle Scholar
  57. Penland C, Matrosova L (2006) Studies of El Niño and interdecadal variability in tropical sea surface temperatures using a nonnormal filter. J Climate 19(22):5796–5815CrossRefGoogle Scholar
  58. Pohlmann H, Sienz F, Latif M (2006) Influence of the multidecadal Atlantic meridional overturning circulation variability on European climate. J Climate 19(23):6062–6067CrossRefGoogle Scholar
  59. Quadrelli R, Wallace JM (2004) A simplified linear framework for interpreting patterns of northern hemisphere wintertime climate variability. J Climate 17(19):3728–3744CrossRefGoogle Scholar
  60. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  61. Schneider EK, Fan M (2012) Observed decadal North Atlantic tripole SST variability. Part II: diagnosis of mechanisms. J Atmos Sci 69(1):51–64CrossRefGoogle Scholar
  62. Schott FA, Lee TN, Zantopp R (1988) Variability of structure and transport of the Florida current in the period range of days to seasonal. J Phys Oceanogr 18(9):1209–1230CrossRefGoogle Scholar
  63. Seager R, Harnik N, Kushnir Y, Robinson W, Miller J (2003) Mechanisms of hemispherically symmetric climate variability. J Climate 16:2960–2978CrossRefGoogle Scholar
  64. Stickler A et al (2009) The comprehensive historical upper-air network. Bull Am Meteorol Soc 91(6):741–751CrossRefGoogle Scholar
  65. Strong C, Magnusdottir G, Stern H (2009) Observed feedback between winter sea ice and the North Atlantic oscillation. J Climate 22(22):6021–6032CrossRefGoogle Scholar
  66. Sutton RT, Hodson DLR (2007) Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J Climate 20(5):891–907CrossRefGoogle Scholar
  67. Sutton RW, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118CrossRefGoogle Scholar
  68. Teng H, Branstator G, Meehl GA (2011) Predictability of the Atlantic overturning circulation and associated surface patterns in two CCSM3 climate change ensemble experiments. J Climate, in press, doi: 10.1175/2011JCLI4207.1
  69. Thompson D, Wallace J (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300CrossRefGoogle Scholar
  70. Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12 704. doi: 10.1029/2006GL026 894 CrossRefGoogle Scholar
  71. Valcke S (2006) OASIS3 User guide (prism 2-5). Tech. rep., CERFACS PRISM Support Initiative Report, No 3, p 64Google Scholar
  72. Watanabe M, Kimoto M (2000) Atmosphere-ocean thermal coupling in the North Atlantic: a positive feedback. Q J R Meteorol Soc 126(570):3343–3369CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Guillaume Gastineau
    • 1
  • Fabio D’Andrea
    • 2
  • Claude Frankignoul
    • 1
  1. 1.Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN) Université Pierre et Marie Curie-Paris 6, IPSL/CNRSParis Cedex 05France
  2. 2.Laboratoire de Météorologie Dynamique (LMD)IPSL/CNRSParisFrance

Personalised recommendations