Advertisement

Climate Dynamics

, Volume 39, Issue 6, pp 1489–1505 | Cite as

TIMED/SABER observations of global gravity wave climatology and their interannual variability from stratosphere to mesosphere lower thermosphere

  • Sherine Rachel John
  • Karanam Kishore KumarEmail author
Article

Abstract

The present study for the first time reports the global gravity wave activity in terms of their potential energy derived from TIMED/SABER observations right from the stratosphere to the mesosphere lower thermosphere (MLT) region. The potential energy profiles obtained from SABER temperature are validated by comparing them with ground based LIDAR observations over a low latitude site, Gadanki (13.5° N, 79.2° E). The stratospheric and mesospheric global maps of gravity wave energy showed pronounced maxima over high and polar latitudes of the winter hemisphere. The interannual variability of the stratospheric gravity wave activity exhibited prominent annual oscillation over mid-latitudes. The equatorial gravity wave activity exhibited quasi-biennial oscillation in the lower stratosphere and semi-annual oscillation in the upper stratosphere. The MLT region maps revealed summer hemispheric maxima over polar latitudes and secondary maxima over the equatorial region. The results are discussed in the light of present understanding of global gravity wave observations. The significance of the present study lies in emphasizing the importance of satellite measurements in elucidating gravity waves, which is envisaged to have profound impact on parameterizing these waves.

Keywords

Gravity waves Middle atmospheric dynamics Quasi-biennial oscillation Polar middle atmosphere 

Notes

Acknowledgments

Sherine Rachel John is grateful to ISRO for providing Research Fellowship for her work. The authors are thankful to the TIMED/SABER team for the freely downloadable data, to ECMWF for the ERA-40 wind data, and to NARL, Gadanki, for the Lidar data during the MIDAS period used in this study.

References

  1. Alexander MJ (1998) Interpretations of observed climatological patterns in stratospheric gravity wave variance. J Geophys Res 103(D8):8627–8640Google Scholar
  2. Alexander MJ, Barnet C (2007) Using satellite observations to constrain parameterizations of gravity wave effects for global models. J Atmos Sci 64(5):1652–1665CrossRefGoogle Scholar
  3. Alexander MJ et al (2008) Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations. J Geophys Res 113:D15S18. doi: 10.1029/2007JD008807 CrossRefGoogle Scholar
  4. Antonita TM, Ramkumar G, Kumar KK, Appu KS, Nambhoodiri KVS (2007) A quantitative study on the role of gravity waves in driving the tropical Stratospheric Semiannual Oscillation. J Geophys Res 112:D12115. doi: 10.1029/2006JD008250 CrossRefGoogle Scholar
  5. Antonita TM, Ramkumar G, Kumar KK, Deepa V (2008a) Meteor wind radar observations of gravity wave momentum fluxes and their forcing toward the Mesospheric Semiannual Oscillation. J Geophys Res 113:D10115. doi: 10.1029/2007JD009089 CrossRefGoogle Scholar
  6. Antonita TM, Ramkumar G, Kumar KK, Sunil Kumar SV (2008b) Quantification of gravity wave forcing in driving the stratospheric Quasi-Biennial Oscillation. Geophys Res Lett 35:L09805. doi: 10.1029/2008GL033960 CrossRefGoogle Scholar
  7. Beatty TJ, Hostetler CA, Gardner CS (1992) Lidar observations of gravity waves and their spectra near the mesopause and stratopause at Arecibo. J Atmos Sci 49:477–496CrossRefGoogle Scholar
  8. Deepa V, Ramkumar G, Krishna Murthy BV (2006) Gravity waves observed from the Equatorial Wave Studies (EWS) campaign during 1999 and 2000 and their role in the generation of stratospheric semiannual oscillations. Ann Geophys 24:2481–2491CrossRefGoogle Scholar
  9. Eckermann SD, Hirota I, Hocking WK (1994) Gravity wave and equatorial wave morphology of the stratosphere derived from long-term rocket soundings. Q J R Meteorol Soc 121:149–186CrossRefGoogle Scholar
  10. Ern M, Preusse P, Alexander MJ, Warner CD (2004) Absolute values of gravity wave momentum flux derived from satellite data. J Geophys Res 109:D20103. doi: 10.1029/2004JD004752 CrossRefGoogle Scholar
  11. Fetzer EJ, Gille JC (1994) Gravity wave variances in LIMS temperatures, part I, variability and comparison with background winds. J Atmos Sci 51:2461–2483CrossRefGoogle Scholar
  12. Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41(1):1003. doi: 10.1029/2001RG000106 Google Scholar
  13. Frohlich K et al (2007) The global distribution of gravity wave energy in the lower stratosphere derived from GPS data and gravity wave modelling: attempt and challenges. J Atmos Solar Terr Phys 69:2238–2248. doi: 10.1016/j.jastp.2007.07.005 CrossRefGoogle Scholar
  14. Kishore Kumar G, Venkat Ratnam M, Patra AK, Rao SVB, Russell J (2008) Mean thermal structure of the low-latitude middle atmosphere studied using Gadanki Rayleigh lidar, Rocket, and SABER/TIMED observations. J Geophys Res 113:D23106. doi: 10.1029/2008JD010511 CrossRefGoogle Scholar
  15. Kumar KK (2006) VHF radar observations of convectively generated gravity waves: Some new insights. Geophys Res Lett 33:L01815. doi: 10.1029/2005GL024109 CrossRefGoogle Scholar
  16. Kumar KK (2007a) VHF radar investigations on the role of mechanical oscillator effect in exciting convectively generated gravity waves. Geophys Res Lett 34:L01803. doi: 10.1029/2006GL027404 CrossRefGoogle Scholar
  17. Kumar KK (2007b) Temperature profiles in the MLT region using radar-meteor trail decay times: Comparison with TIMED/SABER observations. Geophys Res Lett 34:L16811. doi: 10.1029/2007GL030704 CrossRefGoogle Scholar
  18. Kumar KK, Antonita TM, Shelbi ST (2007) Initial results from SKiYMET meteor radar at Thumba (8.5°N, 77°E): 2. Gravity wave observations in the MLT region. Radio Sci 42:RS6009. doi: 10.1029/2006RS003553
  19. Li Z, Robinson W, Liu AZ (2009) Sources of gravity waves in the lower stratosphere above South Pole. J Geophys Res 114:D14103. doi: 10.1029/2008JD011478 CrossRefGoogle Scholar
  20. Lieberman RS, Riggin DM, Garcia RR, Wu Q, Remsberg EE (2006), Observations of intermediate-scale diurnal waves in the equatorial mesosphere and lower thermosphere. J Geophys Res 111:A10S11. doi: 10.1029/2005JA011498
  21. Lindzen RS (1973) Wave-mean flow interactions in the upper atmosphere. Bound Layer Meteor 4:327–343Google Scholar
  22. Lubken FJ, Fricke KH, Langer M (1996) Noctilucent clouds and the thermal structure near the Arctic mesopause in summer. J Geophys Res 101:9489–9508CrossRefGoogle Scholar
  23. Mertens CJ, Mlynczak MG, López-Puertas M, Wintersteiner PP, Picard RH, Winick JR, Gordley LL, Russell JM III (2001) Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 mm Earth limb emission under non-LTE conditions. Geophys Res Lett 28(7):1391–1394CrossRefGoogle Scholar
  24. Mertens CJ et al (2004) SABER observations of mesospheric temperatures and comparisons with falling sphere measurements taken during the 2002 summer MaCWAVE campaign. Geophys Res Lett 31:L03105. doi: 10.1029/2003GL018605 CrossRefGoogle Scholar
  25. Namboothiri SP, Jiang JH, Kishore P, Igarashi K, Ao CO, Romans LJ (2008) CHAMP observations of global gravity wave fields in the troposphere and stratosphere. J Geophys Res 113:D07102. doi: 10.1029/2007JD008912 CrossRefGoogle Scholar
  26. Nastrom GD, Fritts DC (1992) Sources of mesoscale variability of gravity waves, part I. Topographic excitation. J Atmos Sci 49:101–110CrossRefGoogle Scholar
  27. Parameswaran K, Sasi MN, Ramkumar G, Nair PR, Deepa V et al (2000) Altitude profiles of temperature from 4 to 80 km over the tropics from MST radar and lidar. J Atmos Sol Terr Phys 62:1327–1337CrossRefGoogle Scholar
  28. Preusse P, Eckermann SD, Offermann D (2000) Comparison of global distributions of zonal-mean gravity wave variance inferred from different satellite instruments. Geophys Res Lett 27(23):3877–3880, 2000GL011916Google Scholar
  29. Preusse P, Do¨rnbrack A, Eckermann SD, Riese M, Schaeler B, Bacmeister J, Broutman D, Grossmann KU (2002) Space based measurements of stratospheric mountain waves by CRISTA: 1. Sensitivity, analysis method and a case study. J Geophys Res 107(D23):8178. doi: 10.1029/2001JD000699 Google Scholar
  30. Preusse P, Eckermann SD, Ern M, Oberheide J, Picard RH, Roble RG, Riese M, Russell JM III, Mlynczak MG (2009) Global ray tracing simulations of the SABER gravity wave climatology. J Geophys Res 114:D08126. doi: 10.1029/2008JD011214 CrossRefGoogle Scholar
  31. Ramkumar G, Antonita TM, Bhavani Kumar Y, Venkata Kumar H, Narayana Rao D (2006) Seasonal variation of gravity waves in the Equatorial Middle Atmosphere: results from ISRO’s Middle Atmospheric Dynamics (MIDAS) program. Ann Geophys 24:2471–2480CrossRefGoogle Scholar
  32. Ratnam VM, Tetzlaff G, Jacobi C (2004) Global and seasonal variations of stratospheric gravity wave activity deduced from the CHAMP/GPS satellite. J Atmos Sci 61:1610–1620CrossRefGoogle Scholar
  33. Remsberg E, Lingenfelser G, Harvey VL, Grose W, Russell III J, Mlynczak M, Gordley L, Marshall BT (2003), On the verification of the quality of SABER temperature, geopotential height, and wind fields by comparison with Met Office assimilated analyses. J Geophys Res 108(D20):4628. doi: 10.1029/2003JD003720 Google Scholar
  34. Remsberg EE et al (2008) Assessment of the quality of the version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J Geophys Res 113:D17101. doi: 10.1029/2008JD010013 CrossRefGoogle Scholar
  35. Riggin DM, Fritts DC, Fawcett CD, Kudeki E, Hitchman MH (1997) Radar observations of gravity waves over Jicamarca, Peru, during the CADRE campaign. J Geophys Res 102:26263–26281Google Scholar
  36. Sato K (2000) Sources of gravity waves in the middle atmosphere. Adv Polar Upper Atmos Res 14:233–240Google Scholar
  37. Schroeder S, Preusse P, Ern M, Riesse M (2009) Gravity waves resolved in ECMFW and measured by SABER. Geophys Res Lett 36:L10805. doi: 10.1029/2008GL037054 CrossRefGoogle Scholar
  38. Torre A, Schmidt T, Wickert J (2006) A global analysis of wave potential energy in the lower stratosphere derived from 5 years of GPS radio occultation data with CHAMP. Geophys Res Lett 33:L24809. doi: 10.1029/2006GL027696 CrossRefGoogle Scholar
  39. Tsuda T, Inoue T, Kato S, Fukao S, Fritts DC, VanZandt TE (1989) MST radar observations of a saturated gravity wave spectrum. J Atmos Sci 46:2440–2447CrossRefGoogle Scholar
  40. Tsuda T, Nishida M, Rocken C, Ware RH (2000) A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J Geophys Res 105:7257–7273CrossRefGoogle Scholar
  41. Tsuda T, Ratnam MV, May PT, Alexander MJ, Vincent RA, MacKinnon A (2004) Characteristics of gravity waves with short vertical wavelengths observed with radiosonde and GPS occultation during DAWEX (Darwin Area Wave Experiment). J Geophys Res 109:D20S03. doi: 10.1029/2004JD004946
  42. Wang L, Geller MA (2003) Morphology of gravity-wave energy as observed from 4 years (1998–2001) of high vertical resolution U.S. radiosonde data. J Geophys Res 108(D16):4489. doi: 10.1029/2002JD002786 Google Scholar
  43. Wilson R, Chanin ML, Hauchecorne A (1991a) Gravity waves in the middle atmosphere observed by Rayleigh lidar 1. Case studies. J Geophys Res 96:5169–5183CrossRefGoogle Scholar
  44. Wilson R, Chanin ML, Hauchecorne A (1991b) Gravity waves in the middle atmosphere observed by Rayleigh lidar 2. Climatology. J Geophys Res 96:5153–5165CrossRefGoogle Scholar
  45. Wu DL, Waters JW (1996) Satellite observations of atmospheric variances: a possible indication of gravity waves. Geophys Res Lett 23(3631–3634):1996Google Scholar
  46. Wu DL, Waters JW (1997) Observations of gravity waves with the UARS Microwave Limb Sounder, Gravity wave Processes, NATOASI Series 1: Global Environment. Change 50:103–120Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Space Physics LaboratoryVikram Sarabhai Space CentreThiruvananthapuramIndia

Personalised recommendations